
1/13

xer0xE9 blog March 27, 2022

A Case of Vidar Infostealer - Part 1 (Unpacking)
xer0xe9.github.io/A-Case-of-Vidar-Infostealer-Part-1-(-Unpacking-)/

Mar 27, 2022

Hi, in this post, I’ll be unpacking and analyzing Vidar infostealer from my BSides Islamabad
2021 talk. Initial stage sample comes as .xll file which is Excel Add-in file extension. It allows
third party applications to add extra functionality to Excel using Excel-DNA, a tool or library
that is used to write .NET Excel add-ins. In this case, xll file embeds malicious downloader dll
which further drops packed Vidar infostealer executable on victim machine, investigating
whole infection chain is out of scope for this post, however I’ll be digging deep the dropped
executable (Packed Vidar) in Part1 of this blogpost and final infostealer payload in Part2.

SHA256: 5cd0759c1e566b6e74ef3f29a49a34a08ded2dc44408fccd41b5a9845573a34c

Technical Analysis

I usually start unpacking general malware packers/loaders by looking it first into basic static
analysis tools, then opening it into IDA and taking a bird’s eye view of different sections for
variables with possible encrypted strings, keys, imports or other global variables containing
important information, checking if it has any crypto signatures identified and then start
debugging it. After loading it into x64dbg, I first put breakpoint on memory allocation APIs
such as LocalAlloc, GlobalAlloc, VirtualAlloc and memory protection API: VirtualProtect, and
hit run button to see if any of the breakpoints hits. If yes, then it is fairly simple to unpack it
and extract next stage payload, otherwise it might require in-depth static and dynamic
analysis. Let’s hit run button to see where it takes us next.

Shellcode Extraction

Here we go, the first breakpoint hits in this case, is VirtualProtect, being called on a stack
memory region of size 0x28A to grant it Execute Read Write (0x40) protection, strange
enough right!

https://xer0xe9.github.io/A-Case-of-Vidar-Infostealer-Part-1-(-Unpacking-)/
https://bazaar.abuse.ch/sample/5cd0759c1e566b6e74ef3f29a49a34a08ded2dc44408fccd41b5a9845573a34c/


2/13

Figure1

first few opcodes E9, 55, 8B in dumped data on stack correspond to jmp, push and mov
instructions respectively, so it can be assumed it is shellcode being pushed on stack and
then granted Execute protection to later execute it, If I hit execute till return button on
VirtualProtect and trace back from it into disassembler, I can see shellcode stored as stack
strings right before VirtualProtect call and list of arguments are pushed as shown in the
figure below



3/13

following few statements are preparing to execute shellcode on stack by retrieving a handle
to a device context (DC) object and passing this handle to GrayStringA to execute shellcode
from stack (ptr value in eax taken from Figure1)

let’s now start exploring the shellcode.

Debugging shellcode to extract final payload

As soon as, GrayStringA executes, it hits on VirtualAlloc breakpoint set in the debugger,
which is being called to reserver/commit 0xAA3CE size of memory with MEM_COMMIT |
MEM_RESERVE (0x3000) memory allocation type



4/13

returning control from VirtualAlloc and stepping over one more time from ret, leads us to the
shellcode, next few statements after VirtualAlloc call are pushing pointer to newly created
buffer, size of the buffer and the file handle for currently loaded process on stack to call
ReadFile

which reads 0xAA3CE bytes of data from parent process image into the buffer, let’s say it
buffer1



5/13

further execution again hits at VirtualAlloc breakpoint, this time allocating 0x14F0 bytes of
memory, I’ll now put a write breakpoint in the memory region reserved/committed by second
VirtualAlloc API call to see what and how data gets dumped into second buffer, buffer2.
Hitting Run button once more will break at instruction shown in the figure below

this loop is copying 0x14F0 bytes of data from a certain offset of buffer1 into buffer2, next
few statements are agaian calling VirtualAlloc to allocate another 0x350DE bytes of memory
say buffer3, pushing returned buffer address along with an offset from buffer1 on stack to
copy 0x350DE bytes of data from buffer1 into buffer3



6/13

loop in the following figure is decrypting data copied to buffer2, next push instruction is
pushing the buffer3 pointer on stack as an argument of the routine being called from buffer2
address in edx which is supposed to process buffer3 contents

figure below is showing final buffer2 decrypted contents



7/13

stepping into edx starts executing buffer2 contents, where it seems to push stack strings for
kernel32.dll first and then retrieves kernel32.dll handle by parsing PEB (Process
Environment Block) structure



8/13

retrieved kernel32.dll handle is passed to next call along with another argument with
constant FF7F721A value, a quick Google search for this constant results in some public
sandbox links but not clear what is this exactly about. Let’s dig into it further, stepping over
this routine 0x0A4E results in GetModuleFileNameW API’s resolved address from
Kernel32.dll stored in eax which means this routine is meant to resolve hashed APIs



9/13

similarly second call resolves 7F91A078 hash value to ExitProcess API, wrapper routine
0x0A4E iterates over library exports and routine 0x097A is computing hash against input
export name parameter. Shellcode seems to be using a custom algorithm to hash API,
computed hash value is retuned back into eax which is compared to the input hash value
stored at [ebp-4], if both hash values are equal, API is resolved and its address is stored in
eax

next few instructions write some junk data on stack followed by pushing pointer to buffer3
and total size of buffer3 contents (0x350C0) on stack and execute routine 0x0BE9 for
decryption - this custom decryption scheme works by processing each byte from buffer3
using repetitive neg, sub, add, sar, shl, not, or and xor set of instructions with hard-coded
values in multiple layers, intermediate result is stored in [ebp-1]



10/13

and final value overwrites the corresponding buffer3 value at [eax] offset



11/13

once buffer3 contents are decrypted, it continues to resolve other important APIs in next
routine 0x0FB6



12/13

I wrote a simple POC python script for hashing algorithm implemented by decrypted
shellcode which can be found here

after all required APIs have been resolved, it proceeds to create a new process

using CreateProcessW in suspended mode

https://github.com/xer0xE9/RE_tips_and_tricks/blob/master/vidar_packer/api_hash_strings.py


13/13

and then final payload is injected into newly created process using SetThreadContext API,
CONTEXT structure for remote thread is set up with ContextFlag and required memory
buffers and SetThreadContext API is called with current thread handle and remote thread
CONTEXT structure for code injection

main process terminates right after launching this process, we can now take a dump of this
process to extract final payload.

That’s it for unpacking! see you soon in the next blogpost covering detailed analysis of Vidar
infostealer.


