
1/25

Analysis of a Caddy Wiper Sample Targeting Ukraine
n0p.me/2022/03/2022-03-26-caddywiper/

Analysis of a Caddy Wiper Sample

Introduction

CaddyWiper was first reported by ESET as below:

Dubbed CaddyWiper by ESET analysts, the malware was first detected at 11.38 a.m.
local time (9.38 a.m. UTC) on Monday. The wiper, which destroys user data and
partition information from attached drives, was spotted on several dozen systems in a
limited number of organizations. It is detected by ESET products as
Win32/KillDisk.NCX.

One of my friends pinged me a few days later with a link to a CaddyWiper sample. Since this
sample was a particularly small one, I decided to write a blog post going through each
function from scratch and introducing the tools I used to make my life easier. Hopefully, this
can serve as a reference to junior malware analysts who want to get started with this craft.

First off, I’m a Linux user myself and I use mainly Linux tools to analyse malware. pev is a
set command-line utilities providing a high level analysis of a PE binary. It consists of the
following tools

https://n0p.me/2022/03/2022-03-26-caddywiper/
https://www.welivesecurity.com/2022/03/15/caddywiper-new-wiper-malware-discovered-ukraine/
https://bazaar.abuse.ch/download/a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea/

2/25

of
s2
rv
a
pe
di
s
pe
ha
sh
pe
ld
d
pe
pa
ck
pe
re
s
pe
sc
an
pe
se
c
pe
st
r
re
ad
pe
rv
a2
of
s

running pehash on the sample offers the following:

3/25

filepath:
a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea.exe

md5: 42e52b8daf63e6e26c3aa91e7e971492

sha1: 98b3fb74b3e8b3f9b05a82473551c5a77b576d54

sha256: a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea

ssdeep:
192:76f0CW5P2Io4evFrDv2ZRJzCn7URRsjVJaZF:76fPWl24evFrT2ZR5Cn7UR0VJo

imphash: ea8609d4dad999f73ec4b6f8e7b28e55

readpe result:

DOS Header

Magic number: 0x5a4d (MZ)

Bytes in last page: 144

Pages in file: 3

Relocations: 0

4/25

Size of header in paragraphs: 4

Minimum extra paragraphs: 0

Maximum extra paragraphs: 65535

Initial (relative) SS value: 0

Initial SP value: 0xb8

Initial IP value: 0

Initial (relative) CS value: 0

Address of relocation table: 0x40

Overlay number: 0

OEM identifier: 0

OEM information: 0

PE header offset: 0xc8

COFF/File header

5/25

Machine: 0x14c IMAGE_FILE_MACHINE_I386

Number of sections: 3

Date/time stamp: 1647242376 (Mon, 14 Mar 2022 07:19:36
UTC)

Symbol Table offset: 0

Number of symbols: 0

Size of optional header: 0xe0

Characteristics: 0x102

Characteristics names

IMAGE_FILE_EXECUTABLE_IMAGE

IMAGE_FILE_32BIT_MACHINE

Optional/Image header

Magic number: 0x10b (PE32)

Linker major version: 10

Linker minor version: 0

6/25

Size of .text section: 0x1c00

Size of .data section: 0x400

Size of .bss section: 0

Entrypoint: 0x1000

Address of .text section: 0x1000

Address of .data section: 0x3000

ImageBase: 0x400000

Alignment of sections: 0x1000

Alignment factor: 0x200

Major version of required OS: 5

Minor version of required OS: 1

Major version of image: 0

7/25

Minor version of image: 0

Major version of subsystem: 5

Minor version of subsystem: 1

Size of image: 0x5000

Size of headers: 0x400

Checksum: 0

Subsystem required: 0x2 (IMAGE_SUBSYSTEM_WINDOWS_GUI)

DLL characteristics: 0x8140

DLL characteristics names

IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE

IMAGE_DLLCHARACTERISTICS_NX_COMPAT

IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE

Size of stack to reserve: 0x100000

8/25

Size of stack to commit: 0x1000

Size of heap space to reserve: 0x100000

Size of heap space to commit: 0x1000

Data directories
Directory

IMAGE_DIRECTORY_ENTRY_IMPORT: 0x3008 (40 bytes)

Directory

IMAGE_DIRECTORY_ENTRY_BASERELOC: 0x4000 (12 bytes)

Directory

IMAGE_DIRECTORY_ENTRY_IAT: 0x3000 (8 bytes)

Imported functions
Library

Name: NETAPI32.dll

Functions
Function

Hint: 39

Name: DsRoleGetPrimaryDomainInformation

Exported functions
Sections
Section

Name: .text

9/25

Virtual Size: 0x1b4a (6986 bytes)

Virtual Address: 0x1000

Size Of Raw Data: 0x1c00 (7168 bytes)

Pointer To Raw Data: 0x400

Number Of Relocations: 0

Characteristics: 0x60000020

Characteristic Names

IMAGE_SCN_CNT_CODE

IMAGE_SCN_MEM_EXECUTE

IMAGE_SCN_MEM_READ

Section

Name: .rdata

Virtual Size: 0x6a (106 bytes)

Virtual Address: 0x3000

10/25

Size Of Raw Data: 0x200 (512 bytes)

Pointer To Raw Data: 0x2000

Number Of Relocations: 0

Characteristics: 0x40000040

Characteristic Names

IMAGE_SCN_CNT_INITIALIZED_DATA

IMAGE_SCN_MEM_READ

Section

Name: .reloc

Virtual Size: 0x18 (24 bytes)

Virtual Address: 0x4000

Size Of Raw Data: 0x200 (512 bytes)

Pointer To Raw Data: 0x2200

Number Of Relocations: 0

11/25

Characteristics: 0x42000040

Characteristic Names

IMAGE_SCN_CNT_INITIALIZED_DATA

IMAGE_SCN_MEM_DISCARDABLE

IMAGE_SCN_MEM_READ

If you’re new to analyzing a PE, I highly recommend looking at the official Microsoft
documents for PE Format. Some notes from the link:

At location 0x3c, the stub has the file offset to the PE signature. This information
enables Windows to properly execute the image file, even though it has an MS-DOS
stub. This file offset is placed at location 0x3c during linking. After the MS-DOS stub, at
the file offset specified at offset 0x3c, is a 4-byte signature that identifies the file as a
PE format image file. This signature is “PE\0\0” (the letters “P” and “E” followed by two
null bytes).

Main function Analysis

the main function starts at 00401000 and it looks like it doesn’t return a status code. in c
terms, it means the main function is written like so: void main(...) .

In the main function, we can see a call to the external function
DsRoleGetPrimaryDomainInformation at 0040113a :

https://docs.microsoft.com/en-us/windows/win32/debug/pe-**format**
https://docs.microsoft.com/en-us/windows/win32/api/dsrole/nf-dsrole-dsrolegetprimarydomaininformation

12/25

according to Microsoft documentation, The DsRoleGetPrimaryDomainInformation
function retrieves state data for the computer. This data includes the state of the directory
service installation and domain data.

If we take a closer look at the function call, we can see that the function has been called with
3 parameters: DsRoleGetPrimaryDomainInformation(0,1,&empty_int_pointer); . the
0 refers to the lpServer parameter, meaning the function will be called on the local
computer (refer to the link above for more info on that). The 1 is the InfoLevel

13/25

parameter, which specifies the level of output needed, as well as the type of output being
pushed to our empty_int_pointer . referring to Microsoft Documentation, we can see 1
refers to the first item in the C++ enum, which is DsRolePrimaryDomainInfoBasic :

typedef enum

_DSROLE_PRIMARY_DOMAIN_INFO_L
EVEL

{

DsRolePrimaryDomainInfoBasic
= 1,

DsRoleUpgradeStatus,
DsRoleOperationState

}

DSROLE_PRIMARY_DOMAIN_INFO_LE
VEL

;

If we follow the docs, it’ll mention our output type as
DSROLE_PRIMARY_DOMAIN_INFO_BASIC , and refers to this page. Looks like our return value

will be in this struct:

https://docs.microsoft.com/en-us/windows/win32/api/dsrole/ne-dsrole-dsrole_primary_domain_info_level
https://docs.microsoft.com/en-us/windows/win32/api/dsrole/ns-dsrole-dsrole_primary_domain_info_basic

14/25

typedef struct

_DSROLE_PRIMARY_DOMAIN_INFO_
BASIC

{

DSROLE_MACHINE_ROLE
MachineRole;

ULONG Flags;

LPWSTR DomainNameFlat;

LPWSTR DomainNameDns;

LPWSTR DomainForestName;

GUID DomainGuid;

}

DSROLE_PRIMARY_DOMAIN_INFO_B
ASIC

, *
PDSROLE_PRIMARY_DOMAIN_INFO_
BASIC

;

clearly the attack is interested in MachineRole , and compares it with value 5 . Let’s dig
deeper to see what 5 means. If we go to this doc, we’ll see the following enum :

https://docs.microsoft.com/en-us/windows/win32/api/dsrole/ne-dsrole-dsrole_machine_role

15/25

typedef enum
_DSROLE_MACHINE_ROLE {

DsRole_RoleStandaloneWorkstati
on

,

DsRole_RoleMemberWorkstation,

DsRole_RoleStandaloneServer,

DsRole_RoleMemberServer,

DsRole_RoleBackupDomainControl
ler

,

DsRole_RolePrimaryDomainContro
ller

} DSROLE_MACHINE_ROLE;

5 is the primary Domain Controller. Looking at the code, you can see the attacker does not
intend to attack the primary DC, and will skip them.

After getting all the info, I started to rename the functions and add a bit of comment, as well
as converting types in Ghidra to make sure it’s readable:

16/25

Now we can see there’s a wiper function, which runs on C:\\Users as well as D:\\ for
24 chars (E:\\, F:\\, ...), which means basically all drive letters.

let’s go take a look at the wiper function. That’s where the attacker’s malicious code is
located.

The wiper function

The function itself is a void one. Meaning the attacker didn’t really care if the wiping is
successful or not. Reading a bit of the function itself, the first bit of interesting information is
seen at line ~180. There seems to be another function, that gets called with both * and
\\ values.

17/25

18/25

FUN_00402a80((int)local_ccc,param_1,&local_e4
4);

FUN_00402a80((int)local_89c,local_ccc,&local_
e20);

After digging around the wipe function, you can see kernel32.dll as a stack string with
these functions being called from it (in order):

FindFirst
FileA
FindNextF
ileA
CreateFil
eA
GetFileSi
ze
LocalAllo
c
SetFilePo
inter
WriteFile
LocalFree
CloseHand
le
FindClose

All above functions are thoroughly documented in Microsoft’s official Win32 API Docs

Essentially, the wiper is looking for all the files under C:\Users and D: through Z: and
tries to enumerate the first file within those directories (with FindFirstFileA), then
enumerates through the folders with FindNextFileA , opens the file, scrambles the header

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/

19/25

of each file, and does it across all folder recursively. Here’s the main wiper function with
function names and syscalls somewhat renamed to a more readable format

Subfunction FUN_00402a80

Before we rename this function to something human-readable, we should know what it does.
Here’s the pseudo-code of the function itself:

20/25

The function appears to concat two strings together with a couple of while loops and put
them in the first parameter’s pointer. in python terms, it basically means param_1 =
param_2 + param_3 . From now on, I’ll refer to FUN_00402a80 as concat

subfunction FUN_00401530

After concatenating the paths with * and \\ , FUN_00401530 gets called with two
parameters: findFirstFileA and kernel32.dll , as specified in lines directly after
calling the two concat functions (line 190 to 200 inside the wipe function in Ghidra).

21/25

Even though the logic of the function seems complicated, from what it gets and produces as
an output, it’s safe to assume the function is a Win32 API client. The DLL filename as well as
the specific functionality is pushed to the function and the result is an integer that
corresponds to the API response code. From now on, I’ll refer to FUN_00401530 as
syscall_wrapper

Other Interesting Functions

FUN_00401a10

22/25

Using the same trick we did before, it’s easy to see this function using the same
syscall_wrapper to invoke multiple functions from advapi32.dll :

SetEntriesInAclA
AllocateAndInitiali
zeSid
SetNamedSecurityInf
oA
GetCurrentProcess
OpenProcessToken
SeTakeOwnershipPriv
ilege
FreeSid
LocalFree
CloseHandle

This function looks to be looking into each particular file’s ownership and tries to get around
some ACLs and “access denied” errors that it comes across. I would describe it as a basic
way to try to make a file writable enough so it can destroy it. Although I didn’t read each
individual syscall to back that claim. FUN_00401750 is the main carrier of this operation. In
FUN_00401750 , we can see the following functions:

LookupPrivilegeV
alueA
AdjustTokenPrivi
leges
GetLastError

FUN_00401750 simply tries to see if the malware has enough permission to change
permissions on a file. I’ll rename it to priv_check .

As a result, based on my guess, FUN_00401a10 is renamed to priv_set

Putting it all together

This is a small Malware sample, and it’s effective and fast. In a nutshell, this is what the
attack vector had in mind

Checks if the Computer is a primary domain controller or not. If not, it leaves it behind
and doesn’t wipe it.
It identifies C:\Users and D: through Z: as primary attack targets

23/25

Recursively:
Finds the first file in the folder
Tries to see the permission it has to write to the file
Tries elevating privileges to gain permission to write to the file
Opens the file in write mode
rewrites the file header with gibberish
Close the file

Interestingly, If you run the binary through something like the strings command, you’ll
only see a few strings, like so

strings
a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea.exe

!This program cannot be run in DOS mode.

Rich%
.text
`.rdata
@.reloc

DsRoleGetPrimaryDomainInformation

NETAPI32.dll

This is because the attacker is making use of stack strings . This link has a good
explanation of what are stack strings and how are they used to avoid detection.

Detection

The easiest detection for this particular sample could be a hash value. But since this
malware is small, hashes, even ssdeep are not a very good idea. Let’s try to build a YARA
rule that defines what we learned from the malware.

rule caddywiper {
meta:
author = "Ali Mosajjal"
email = ""
license = "Apache 2.0"

https://rioasmara.com/2020/10/20/evade-strings-detection-with-stack-based/

24/25

description =

"Caddy Wiper Stack String Detection"

strings:

$s1 = /F.{6}i.{6}n.{6}d.{6}F.{6}i.{6}r.{6}s.{6}t.{6}F.{6}i.{6}l.{6}e.{6}A/ //
FindFirstFileA

$s2 = /F.{6}i.{6}n.{6}d.{6}N.{6}e.{6}x.{6}t.{6}F.{6}i.{6}l.{6}e.{6}A/ //
FindNextFileA

$s3 = /C.{6}r.{6}e.{6}a.{6}t.{6}e.{6}F.{6}i.{6}l.{6}e.{6}A/ // CreateFileA

$s4 = /G.{6}e.{6}t.{6}F.{6}i.{6}l.{6}e.{6}S.{6}i.{6}z.{6}e/ // GetFileSize

$s5 = /L.{6}o.{6}c.{6}a.{6}l.{6}A.{6}l.{6}l.{6}o.{6}c/ // LocalAlloc

$s6 = /S.{6}e.{6}t.{6}F.{6}i.{6}l.{6}e.{6}P.{6}o.{6}i.{6}n.{6}t.{6}e.{6}r/ //
SetFilePointer

$s7 = /W.{3}r.{3}i.{3}t.{3}e.{3}F.{3}i.{3}l.{3}e/ // WriteFile

$s8 = /L.{6}o.{6}c.{6}a.{6}l.{6}F.{6}r.{6}e.{6}e/ // LocalFree

$s9 = /C.{6}l.{6}o.{6}s.{6}e.{6}H.{6}a.{6}n.{6}d.{6}l.{6}e/ // CloseHandle

$s10 = /F.{3}i.{3}n.{3}d.{3}C.{3}l.{3}o.{3}s.{3}e/ // FindClose

25/25

condition:

all of ($s*) and filesize < 100KB

}

As we saw, since the attacker was clever enough to use Stack String, our YARA rule is going
to be slow and regex-y but it still works. Interestingly, for WriteFile and FindClose I had
to adjust my regex to factor in the slightly smaller MOV assembly code. I’ve also put a file
size cap on the sample to ignore potentially different variants of this malware.

As an exercise, you can create similar detection for the dll files, which are a bit trickier
considering they’re both wide strings and Stack Strings.

Hope you enjoyed this brief analysis. I’ll put the Ghidra zipped file alongside the scripts,
comments etc in a Github Repo if anyone is interested. Let me know what Malware should I
dissect next :)

