
1/9

Episode #276: Tracking cyber intruders with Jupyter and
Python

pythonbytes.fm/episodes/show/276/tracking-cyber-intruders-with-jupyter-and-python

Published Wed, Mar 23, 2022, recorded Tue, Mar 22, 2022.

Watch the live stream:

https://pythonbytes.fm/episodes/show/276/tracking-cyber-intruders-with-jupyter-and-python

2/9

Play on YouTube

About the show

Sponsored by FusionAuth: pythonbytes.fm/fusionauth

Special guest: Ian Hellen

Brian #1: gensim.parsing.preprocessing

Problem I’m working on
Turn a blog title into a possible url

example: “Twisted and Testing Event Driven / Asynchronous Applications -
Glyph”
would like, perhaps: “twisted-testing-event-driven-asynchrounous-
applications”

Sub-problem: remove stop words ← this is the hard part
I started with an article called Removing Stop Words from Strings in Python

It covered how to do this with NLTK, Gensim, and SpaCy
I was most successful with remove_stopwords() from Gensim

from gensim.parsing.preprocessing import remove_stopwords

It’s part of a gensim.parsing.preprocessing package

https://www.youtube.com/watch?v=2dhBSF6EL-M
http://pythonbytes.fm/fusionauth
https://twitter.com/ianhellen
https://radimrehurek.com/gensim/parsing/preprocessing.html
https://stackabuse.com/removing-stop-words-from-strings-in-python/

3/9

I wonder what’s all in there?
a treasure trove
gensim.parsing.preprocessing.preprocess_string is one

this function applies filters to a string, with the defaults almost being just what I
want:

strip_tags()
strip_punctuation()
strip_multiple_whitespaces()
strip_numeric()
remove_stopwords()
strip_short()
stem_text() ← I think I want everything except this

this one turns “Twisted” into “Twist”, not good.
There’s lots of other text processing goodies in there also.
Oh, yeah, and Gensim is also cool.

topic modeling for training semantic NLP models
So, I think I found a really big hammer for my little problem.

But I’m good with that

Michael #2: DevDocs

via Loic Thomson
Gather and search a bunch of technology docs together at once
For example: Python + Flask + JavaScript + Vue + CSS
Has an offline mode for laptops / tablets

https://devdocs.io/

4/9

Installs as a PWA (sadly not on Firefox)

Ian #3: MSTICPy

MSTICPy is toolset for CyberSecurity investigations and hunting in Jupyter notebooks.
What is CyberSec hunting/investigating? - responding to security alerts and threat
intelligence reports, trawling through security logs from cloud services and hosts to
determine if it’s a real threat or not.
Why Jupyter notebooks?

SOC (Security Ops Center) tools can be excellent but all have limitations
You can get data from anywhere
Use custom analysis and visualizations
Control the workflow…. workflow is repeatable

Open source pkg - created originally to support MS Sentinel Notebooks but now
supports lots of providers. When I start this 3+ yrs ago I thought a lot this would be in
PyPI - but no 😞
MSTICPy has 4 main functional areas:

Data querying - import log data (Sentinel, Splunk, MS Defender, others…working
on Elastic Search)
Enrichment - is this IP Address or domain known to be malicious?
Analysis - extract more info from data, identify anomalies (simple example - spike
in logon failures)
Visualization - more specialized than traditional graphs - timelines, process trees.

All components use pandas, Bokeh for visualizations

https://msticpy.readthedocs.io/

5/9

Current focus on usability, discovery of functionality and being able to chain
Always looking for collaborators and contributors - code, docs, queries, critiques
https://github.com/microsoft/msticpy
https://msticpy.readthedocs.io/

https://github.com/microsoft/msticpy
https://msticpy.readthedocs.io/

6/9

Brian #4: The Right Way To Compare Floats in Python

David Amos

https://davidamos.dev/the-right-way-to-compare-floats-in-python/

7/9

Definitely an easier read than the classic What Every Computer Scientist Should Know
About Floating-Point Arithmetic

What many of us remember
floating point numbers aren’t exact due to representation limitations and
rounding error,
errors can accumulate
comparison is tricky

Be careful when comparing floating point numbers, even simple comparisons, like: >>>
0.1 + 0.2 == 0.3 False >>> 0.1 + 0.2 <= 0.3 False
David has a short but nice introduction to the problems of representation and rounding.
Three reasons for rounding

more significant digits than floating point allows
irrational numbers
rational but non-terminating

So how do you compare:
math.isclose()

be aware of rel_tol and abs_tol and when to use each.
numpy.allclose() , returns a boolean comparing two arrays
numpy.isclose() , returns an array of booleans
pytest.approx() , used a bit differently

0.1 + 0.2 == pytest.approx(0.3)

Also allows rel and abs comparisons
Discussion of Decimal and Fraction types

And the memory and speed hit you take on when using them.

Michael #5: Pypyr

Task runner for automation pipelines
For when your shell scripts get out of hand. Less tricky than makefile.
Script sequential task workflow steps in yaml
Conditional execution, loops, error handling & retries
Have a look at the getting started.

Ian #6: Pygments

Python package that’s useful for anyone who wants to display code
Jupyter notebook Markdown and GitHub markdown let you display code with
syntax highlighting. (Jupyter uses Pygments behind the scenes to do this.)
There are tools that convert code to image format (PNG, JPG, etc) but you lose
the ability to copy/paste the code

Pygments can intelligently render syntax-highlighted code to HTML (and other formats)
Applications:

Documentation (used by Sphinx/ReadtheDocs) - render code to HTML + CSS
Displaying code snippets dynamically in readable form

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://pypyr.io/
https://pypyr.io/docs/getting-started/run-your-first-pipeline/
https://pygments.org/

8/9

Lots (maybe 100s) of code lexers - Python (code, traceback), Bash, C, JS, CSS,
HTML, also config and data formats like TOML, JSON, XML
Easy to use - 3 lines of code - example:

from IPython.display import display, HTML
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter

code = """
def print_hello(who="World"):
 message = f"Hello {who}"
 print(message)
"""
display(HTML(
 highlight(code, PythonLexer(), HtmlFormatter(full=True, nobackground=True))
))
use HtmlFormatter(style="stata-dark", full=True, nobackground=True)
for dark themes

Output to HTML, Latex, image formats.
We use it in MSTICPy for displaying scripts used in attacks. Example:

9/9

Extras

Brian:

smart-open
one of the 3 Gensim dependencies
It’s for streaming large files, from really anywhere, and looks just like Python’s
open() .

Michael:

Joke: What’s your secret?

https://pypi.org/project/smart-open/
https://twitter.com/PR0GRAMMERHUM0R/status/1504231058165882888

