
1/14

March 23, 2022

Mustang Panda’s Hodur: Old tricks, new Korplug variant
welivesecurity.com/2022/03/23/mustang-panda-hodur-old-tricks-new-korplug-variant/

ESET researchers have discovered Hodur, a previously undocumented Korplug variant spread by Mustang Panda, that uses phishing lures
referencing current events in Europe, including the invasion of Ukraine

Alexandre Côté Cyr
23 Mar 2022 - 09:00AM

ESET researchers have discovered Hodur, a previously undocumented Korplug variant spread by Mustang Panda, that uses phishing lures
referencing current events in Europe, including the invasion of Ukraine

ESET researchers discovered a still-ongoing campaign using a previously undocumented Korplug variant, which they named Hodur due to its
resemblance to the THOR variant previously documented by Unit 42 in 2020. In Norse mythology, Hodur is Thor’s blind half-brother, who is
tricked by Loki into killing their half-brother Baldr.

Key findings in this blogpost:

As of March 2022, this campaign is still ongoing and goes back to at least August 2021.
Known victims include research entities, internet service providers, and European diplomatic missions.
The compromise chain includes decoy documents that are frequently updated and relate to events in Europe.
The campaign uses a custom loader to execute a new Korplug variant.
Every stage of the deployment process utilizes anti-analysis techniques and control-flow obfuscation, which sets it apart from other
campaigns.
ESET researchers provide an in-depth analysis of the capabilities and commands of this new variant.

Victims of this campaign are likely lured with phishing documents abusing the latest events in Europe such as Russia’s invasion of Ukraine.
This resulted in more than three million residents fleeing the war to neighboring countries, leading to an unprecedented crisis on Ukraine’s
borders. One of the filenames related to this campaign is Situation at the EU borders with Ukraine.exe.

https://www.welivesecurity.com/2022/03/23/mustang-panda-hodur-old-tricks-new-korplug-variant/
https://www.welivesecurity.com/author/acotecyr/
https://www.welivesecurity.com/author/acotecyr/
https://unit42.paloaltonetworks.com/thor-plugx-variant/
https://data2.unhcr.org/en/situations/ukraine

2/14

Other phishing lures mention updated COVID-19 travel restrictions, an approved regional aid map for Greece, and a Regulation of the
European Parliament and of the Council. The last one is a real document available on the European Council’s website. This shows that the
APT group behind this campaign is following current affairs and is able to successfully and swiftly react to them.

Figure 1. Countries affected by Mustang Panda in this campaign

Affected countries:

Mongolia
Vietnam
Myanmar
Greece
Russia
Cyprus
South Sudan
South Africa

Affected verticals:

Diplomatic missions
Research entities
Internet service providers (ISPs)

Analysis

Based on code similarities and the many commonalities in Tactics, Techniques, and Procedures (TTPs), ESET researchers attribute this
campaign with high confidence to Mustang Panda (also known as TA416, RedDelta, or PKPLUG). It is a cyberespionage group mainly
targeting governmental entities and NGOs. Its victims are mostly, but not exclusively, located in East and Southeast Asia with a focus on
Mongolia. The group is also known for its campaign targeting the Vatican in 2020.

While we haven’t been able to identify the verticals of all victims, this campaign seems to have the same targeting objectives as other
Mustang Panda campaigns. Following the APT’s typical victimology, most victims are located in East and Southeast Asia, along with some in
European and African countries. According to ESET telemetry, the vast majority of targets are located in Mongolia and Vietnam, followed by
Myanmar, with only a few in the other affected countries.

Mustang Panda’s campaigns frequently use custom loaders for shared malware including Cobalt Strike, Poison Ivy, and Korplug (also known
as PlugX). The group has also been known to create its own Korplug variants. Compared to other campaigns using Korplug, every stage of
the deployment process utilizes anti-analysis techniques and control-flow obfuscation.

This blogpost contains a detailed analysis of this previously unseen Korplug variant used in this campaign. This activity is part of the same
campaign recently covered by Proofpoint, but we provide additional historical and targeting information.

Toolset

Mustang Panda is known for its elaborate custom loaders and Korplug variants, and the samples used in this campaign showcase this
perfectly.

https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-1.-Countries-affected-by-Mustang-Panda-in-this-campaign-1.png
https://www.recordedfuture.com/reddelta-targets-catholic-organizations/
https://www.proofpoint.com/us/blog/threat-insight/good-bad-and-web-bug-ta416-increases-operational-tempo-against-european

3/14

Compromise chains seen in this campaign follow the typical Korplug pattern: a legitimate, validly signed, executable vulnerable to DLL
search-order hijacking, a malicious DLL, and an encrypted Korplug file are deployed on the target machine. The executable is abused to load
the module, which then decrypts and executes the Korplug RAT. In some cases, a downloader is used first to deploy these files along with a
decoy document. This process is illustrated in Figure 2.

Figure 2. Overview of the deployment process for the Hodur Korplug variant.

What sets this campaign apart is the heavy use of control-flow obfuscation and anti-analysis techniques at every stage of the deployment
process. The following sections describe the behavior of each stage and take a deeper look at the defense evasion techniques used in each
of them.

Initial access

We haven’t been able to observe the initial deployment vector, but our analysis points to phishing and watering hole attacks as likely vectors.
In instances where we saw a downloader, the filenames used suggest a document with an interesting subject for the target. Such examples
include:

COVID-19 travel restrictions EU reviews list of third countries.exe
State_aid__Commission_approves_2022-2027_regional_aid_map_for_Greece.exe
REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.exe
Situation at the EU borders with Ukraine.exe

https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-2.-Overview-of-the-deployment-process-for-the-Hodur-Korplug-variant..png

4/14

To further the illusion, these binaries download and open a document that has the same name but with a .doc or .pdf extension. The contents
of these decoys accurately reflect the filename. As shown in Figure 3, at least one of them is a publicly accessible legitimate document from
the European Parliament.

Figure 3. First page of the decoy document for the REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.exe downloader. It’s a real
document available on the European Council’s website.

Downloader

Although its complexity has increased over the course of the campaign, the downloader is fairly straightforward. This increase in complexity
comes from additional anti-analysis techniques, which we cover later in this section.

It first downloads four files over HTTPS: a decoy document, a legitimate executable, a malicious module, and an encrypted Korplug file. The
combination of those last three components to execute a payload via DLL side-loading is sometimes referred to as a trident and is a
technique commonly used by Mustang Panda, and with Korplug loaders in general. Both the server addresses and file paths are hardcoded
in the downloader executable. Once everything is downloaded, and the decoy document opened to distract the victim, the downloader uses
the following command line to launch the legitimate executable:

cmd /c ping 8.8.8.8 -n 70&&”%temp%\<legitimate executable>”

This ping command both checks internet connectivity and introduces a delay (through the -n 70 option) before executing the downloaded,
legitimate executable.

The downloader uses multiple anti-analysis techniques, many of which are also used in the loader and final payload. Additional obfuscation
has been added to new versions over the course of the campaign without otherwise changing their goal.

In early versions of the downloader, junk code and opaque predicates were used to hinder analysis, as shown in Figure 4, but the server and
filenames are plainly visible in cleartext.

Figure 4. Control flow obfuscation in early versions of the downloader

In later versions, the files on the server are RC4 encrypted, using the base 10 string representation of the file size as the key, and then hex-
encoded. This process is illustrated in the Python snippet below. The opposite operations are performed client-side by the downloader to
recover the plaintext files. This is likely done to bypass network-level protections.

https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-3.-First-page-of-the-decoy-document-for-the-REGULATION-OF-THE-EUROPEAN-PARLIAMENT-AND-OF-THE-COUNCIL.exe-downloader.-It%E2%80%99s-a-real-document-available-on-the-European-Council%E2%80%99s-website..png
https://www.welivesecurity.com/2020/12/10/luckymouse-ta428-compromise-able-desktop/
https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-4.-Control-flow-obfuscation-in-early-versions-of-the-downloader.png

5/14

from Crypto.cipher import ARC4
key = “%d” % len(plaintext)
rc4 = ARC4.new(key)
cipher_content = rc4.encrypt(plaintext).hex().upper()

These versions replace the use of cleartext strings with encrypted stack strings. They are still hardcoded in the file, but the obfuscation
surrounding them, and the use of different keys, makes it hard to decrypt them statically in an automated manner. This same technique is
used heavily in the subsequent stages. Encrypted stack strings are also used to obfuscate calls to Windows API functions.

First, the name of the target function is decrypted and passed to a function. This function obtains a pointer to the InMemoryOrderModuleList
field of the PEB (Process Environment Block). It then iterates over the loaded modules, passing each handle to GetProcAddress along with
the function name until the target function is successfully resolved. Part of this process can be seen in Figure 5.

Figure 5. Obfuscation of Windows API calls in the downloader. The screenshot shows a call to WriteFile, but the same pattern is used for all API functions.

Loader

As is common with Korplug, the loader is a DLL that exploits a side-loading vulnerability in a legitimate, signed executable. We have observed
many different applications being abused in this campaign, for instance a vulnerable SmadAV executable previously seen by Qurium in a
campaign attributed to Mustang Panda that targeted Myanmar.

The loader exports multiple functions. The exact list varies depending on the abused application, but in all cases, only one of them does
anything of consequence. In all of the loaders we observed, this is the exported function with the highest load address. All the other exports,
and the library’s entry point, either return immediately or execute some do-nothing junk code. Many of these exports have names that consist
of random lowercase letters and point to the same address as shown in Table 1.

Table 1. Functions exported by a Hodur loader. The createSystemFontsUsingEDL export is the one that loads the final malware stage in this
version.

Name Ordinal Function RVA

CreatePotPlayerExW 1 0x00007894

RunPotPlayer 2 0x000166A5

createSystemFontsUsingEDL 3 0x00016779

gGegcerhwyvxtkrtyawvugo 4 0x00007894

liucigvyworf 5 0x00007639

ojohjinbgdfqtcwxojeusoneslciyxtiyjuieaugadjpd 6 0x000077CA

soeevhiywsypipesxfhgxboleahfwvlqcqp 7 0x00007894

srkeqffanuhiuwahbmatdurggpffhbkcpukyxgxmosn 8 0x00007894

thggvmrv 9 0x00007701

The loader function obtains the directory from which the DLL is running using GetModuleFileNameA and tries to open the encrypted Korplug
file it contains. That filename is hardcoded in the loader. It reads the file’s contents into a locally allocated buffer and decrypts it. The loader
makes this buffer executable using VirtualProtect before calling into it at offset 0x00.

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-5.-Obfuscation-of-Windows-API-calls-in-the-downloader.-The-screenshot-shows-a-call-to-WriteFile-but-the-same-pattern-is-used-for-all-API-functions..png
https://www.qurium.org/alerts/targeted-malware-against-crph/

6/14

Windows API function calls are obfuscated with a different technique than that used in the downloader. Unlike the loader, which contains the
names of its functions (as shown in Table 1 above), only the 64-bit hashes of the Windows API function calls are present in the binary. To
resolve those functions, the loader traverses the export lists of all loaded libraries via the InMemoryOrderModuleList of the PEB. Each
export’s name is hashed, then compared to the expected value. The FNV-1a hash algorithm, recently brought back into the mainstream by
the Sunburst backdoor, has previously been used by Mustang Panda, in Korplug loaders documented by XORHEX, to resolve
GetProcAddress and LoadLibraryA, although it was not identified by name in that analysis. In this version, however, it is used for all API
functions.

Korplug backdoor

Korplug (also known as PlugX) is a RAT used by multiple APT groups. In spite of it being so widely used, or perhaps because of it, few
reports extensively describe its commands and the data it exfiltrates. Its functionality is not constant between variants, but there does seem to
exist a significant overlap in the list of commands between the version we analyzed and other sources such as the Avira report from January
2020 and the plugxdecoder project on GitHub.

As previously mentioned, the variant used in this campaign bears many similarities to the THOR variant, which is why we have named it
Hodur. The similarities include the use of the Software\CLASSES\ms-pu registry key, the same format for C&C servers in the configuration,
and use of the Static window class.

As expected for Korplug payloads, this stage is only ever decrypted in memory by the loader. Only the encrypted version is written to disk in a
file with a .dat extension.

Unless stated otherwise, all hardcoded strings discussed in this section are stored as encrypted stack strings.

In this module, Windows API functions are obfuscated through a combination of the methods used in previous stages. LoadLibraryA and
GetProcAddress are resolved via the FNV-1a hashing technique and stack strings are decrypted and passed to them to obtain the target
function.

Loading

Once decrypted, the payload is a valid DLL that exports a single function. In almost all observed samples from this campaign, this function is
named StartProtect. However, launching it directly via this export or its entry point will not execute the main payload and the loading process
is quite intricate.

As explained in the previous section, the file is decrypted in memory as a continuous blob by the loader and the execution starts at offset
0x00. The PE header contains shellcode, shown in Figure 6, that calls a specific offset that corresponds to the module’s single export.

Figure 6. Shellcode in the PE header that calls the exported function

This function parses the PE blob in memory and manually maps it as a library into a newly allocated buffer. This includes mapping the various
sections, resolving imports and, finally, using DLL_PROCESS_ATTACH to call the DLL entry point. Once again, opaque predicates and junk
code are used to obfuscate the purpose of this function.

The entry point of the properly loaded library is then called with the non-standard value of 0x04 for the fdwReason parameter (only values
from 0x00 to 0x03 are currently defined). This special value is required to get it to execute its main payload. This simple check prevents the
RAT from being trivially executed directly with a generic tool like rundll32.exe.

The backdoor first decrypts its configuration using the string 123456789 as a repeating XOR key. Once decrypted, the configuration block
starts with ########. The layout of the configuration varies slightly between samples, but they all contain at least the following fields:

Installation directory name. Also used as the name of the registry key created for persistence. This value roughly corresponds to the
name of the abused application with three random letters appended (e.g., FontEDLZeP or AdobePhotosGQp)
Mutex name
A value that is either a version or ID string
List of C&C servers. Each entry includes IP address, port number, and a number indicating the protocol to use with that C&C

https://www.mandiant.com/resources/sunburst-additional-technical-details
https://blog.xorhex.com/blog/reddeltaplugxchangeup/
https://www.avira.com/en/blog/new-wave-of-plugx-targets-hong-kong
https://github.com/kcreyts/plugxdecoder
https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-6.-Shellcode-in-the-PE-header-that-calls-the-exported-function.png
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain

7/14

The backdoor then checks the path from which it is running using GetModuleFileNameW. If this matches %userprofile%\<installation
directory> or %allusersprofile%\<installation directory>, the RAT functionality will be executed. Otherwise, it will go through the installation
process.

Installation

To install itself, the malware creates the aforementioned directory under %allusersprofile%. Using SetFileAttributesW, it is then marked as
hidden and system. The vulnerable executable, loader module, and encrypted Korplug files are copied to the new directory.

Next, persistence is established. Earlier samples achieved this by creating a scheduled task to be run at boot via schtasks.exe. Newer
samples add a registry entry to Software\Microsoft\Windows\CurrentVersion\Run, trying the HKLM hive first, then HKCU. This entry has the
same name as the installation directory with its value set to the newly copied executable’s path.

Once persistence has been set up, the malware launches the executable from its new location and exits.

RAT

The RAT functionality of the Hodur variant used in this campaign mostly lines up with other Korplug variants, with some additional commands
and characteristics. As we have previously stated, though, detailed analyses of Korplug commands are few and far between, so we aim to
provide such an analysis in the hopes of aiding future analysts.

When in this mode, the backdoor iterates through the list of C&C servers in its configuration until it reaches the end or receives an Uninstall
command. For each of those servers, it processes commands until it receives a Stop command or encounters an error.

Hodur’s initial handshake can be done over HTTPS or TCP. This is determined by a value in the configuration for that particular C&C server.
Subsequent communication is always done over TCP using a custom protocol that we describe in this section, along with the commands that
can be issued. Hodur uses sockets from the Windows Sockets API (Winsock) that support overlapped I/O.

Following the initial handshake, Hodur’s communications involve TCP messages that consist of a header, with the structure described in
Table 2, followed by a message body that is usually compressed using LZNT1 and always encrypted with RC4. Messages whose Command
number header field have the 0x10000000 bit set (those that contain file contents for the ReadFile and WriteFile commands, described in
Table 3) have encrypted but not compressed message bodies. All encrypted message bodies use the hardcoded key sV!e@T#L$PH% with a
four-byte random nonce (the value at offset 0x00 in the header) appended to it.

Table 2. Header format used for communication between the C&C and the backdoor

Offset Field Description

0x00 Nonce Random nonce appended to the RC4 key.

0x04 Command
number

This field indicates the command to run or the command that caused this response to be sent.

0x08 Length of body Length of the message body. It seems that this field isn’t checked by the client for messages from the C&C
server.

0x0C Command exit
status

The return or error value of the command that was run. This field is not checked by the client in messages
received from the C&C server.

Hodur’s C&C message headers are transmitted in the clear, followed by variably sized (the value at offset 0x08 of the header) message
bodies. The format of the message body varies per command, but once decrypted and decompressed, values of variable length (like strings)
are always at a message body’s end and their offset in the body is stored as an integer in the corresponding message field.

Like the version described by Avira, Hodur has two groups of commands – 0x1001 and 0x1002 – each with its own handler. The C&C server
can set which group to listen for by sending the corresponding ID as the command number when a client is not already in one of the two
modes. It will continue to listen for the same group until it receives the Stop command, or an error occurs (including receiving a message with
an invalid Command number in its header).

The first group, 0x1001, contains commands for managing the execution of the backdoor and doing initial reconnaissance on a newly
compromised host. As these commands take no arguments, messages sent by the C&C server consist only of the headers. Table 3 contains
a list of these commands. The GetSystemInfo command is described in more detail below. Note that no command names are present in the
RAT; they were either taken from previous analyses or provided by us.

Table 3. Commands in group 0x1001

ID Name Description Data in client response

0x1000 Ping Sent by the client when it starts listening for commands from this group. Between 0 and 64 random
bytes

0x1001 GetSystemInfo Get information about the system. See Table 4

https://docs.microsoft.com/en-us/windows/win32/winsock/overlapped-i-o-2

8/14

ID Name Description Data in client response

0x1002 ListenThread Start a new thread that listens for group 0x1002 commands. None

0x1004 ResetConnection Terminate with WSAECONNRESET. N/A

0x1005 Uninstall Delete persistence registry keys, remove itself and created folders. None

0x1007 Stop Set registry key System\CurrentControlSet\Control\ Network\allow to 1 and
exit.

N/A

The GetSystemInfo command collects extensive information about the system, as detailed in Table 4. If it doesn’t already exist, the
Software\CLASSES\ms-pu\CLSID registry key is set to the current timestamp, trying HKLM first then HKCU. The value of this key is then sent
in the response.

Table 4. Response body format for the GetSystemInfo response

Offset Value Offset Value

0x00 Magic bytes 0x20190301 0x38 Suite mask

0x04 Client IP address of the C&C socket 0x3A Product type

0x08 Server IP address of the C&C socket 0x3C 0x01 if the process is running as WOW64

0x0C RAM in KB 0x40 System time – year

0x10 CPU clock rate in MHz 0x42 System time – month

0x14 Display width in pixels 0x44 Timestamp of first run (offset)

0x18 Display height in pixels 0x46 Service pack version string (offset)

0x1C Default locale 0x48 Unknown

0x20 Current tick count 0x4A Username (offset)

0x24 OS major version 0x4C Computer name (offset)

0x28 OS minor version 0x4E Mutex name (offset)

0x2C OS build number 0x50 Unknown

0x30 OS platform ID 0x52 List of machine IP addresses (offset)

0x34 Service pack major version 0x54 Always two 0x00 bytes

0x36 Service pack minor version

The 0x1002 group contains commands that provide RAT functionality, as detailed in Table 5. Some of these take parameters provided in the
command’s message body. The FindFiles command is described in more detail below. Again, note that no command names are present in
the RAT; they were either taken from previous analyses or provided by us.

Table 5. Commands in group 0x1002

ID Name Description
Data in C&C
request Data in client response

0x1002 Ping Sent by the client when it starts listening
for commands from this group.

N/A None

0x3000 ListDrives
List all mapped drives (A: to Z:) and their
properties.

All 26 entries are sent back in one
message body. Drives that aren’t present
have all fields set to 0x00.

None · Drive type
 · Total size

 · Space available to user
 · Free space

 · Volume name (offset)
 · File system name (offset)

0x3001 ListDirectory List the contents of the specified
directory. The client sends one response
message per entry.

Directory path · Is a directory?
 · File attributes

 · File size
 · Creation time

 · Last write time
 · Filename (offset)

 · 8.3 filename (offset)

9/14

ID Name Description
Data in C&C
request Data in client response

0x3002 Sent by the client when it has
finished executing the
ListDirectory command.

N/A None

0x3004 ReadFile Read a file in chunks of 0x4000 bytes. · Creation time
 ·

Last access time
 · Last write time

 · Has offset
 · Offset in file

 · File size
 · File path

0x10003005 Chunk of read file data. N/A Read data

0x10003006 Sent by the client when it has
finished executing the
ReadFile command.

N/A None

0x3007 WriteFile
Write to a file and restore previous
timestamp.

Creates parent directories if they don’t
exist.

· Creation time
 · Last access

time
 · Last write time

 · Has offset
 · Offset in file

 · File path
(offset)

None

0x10003008 Sent by the server with data to
write to the file.

Data to write N/A

0x10003009 Sent by the server when the
WriteFile operation is
complete.

None N/A

0x300A CreateDirectory Create a directory. Directory path None

0x300B CanReadFile Try to open a file with read permissions. File path None

0x300C DesktopExecute Execute a command on a hidden
desktop.

Command line
to execute

PROCESS_INFORMATION
structure for the created
process.

0x300D FileOperation Perform a file operation using
SHFileOperation.

· wFunc
 · fFlags
 · pFrom (offset)

 · pTo (offset)

None

0x300E GetEnvValue Get the value of an environment variable. Environment
variable

Environment variable value.

0x300F CreateProgramDataDir Creates the directory
%SYSTEM%\ProgramData, optionally
with a subdirectory.

Subdirectory
relative path
(optional)

None

0x3102 FindFiles Recursively search a directory for files
matching a given pattern.

· Starting
directory
· Search pattern

See response body format
in Table 6.

0x7002 RemoteShell Start an interactive remote cmd.exe
session.

None None

0x7003 Result of the last command
run.

N/A Command
output

FindFiles command

Starting from the provided directory, this command searches for files whose names match the given pattern. This pattern supports the same
wildcard characters as the Windows FindFirstFile API. For each matching file, the client sends a response message with its body in the
format described in Table 6.

Table 6. Format of the response body for the FindFiles command

Offset Value Offset Value

10/14

Offset Value Offset Value

0x00 File attributes 0x24 Folder path (offset)

0x04 File size in bytes 0x26 Filename (offset)

0x0C Creation time 0x28 8.3 filename (offset)

0x1C Last write time

One response message with an empty body is sent once the search is completed.

Conclusion

The decoys used in this campaign show once more how quickly Mustang Panda is able to react to world events. For example, an EU
regulation on COVID-19 was used as a decoy only two weeks after it came out, and documents about the war in Ukraine started being used
in the days following the beginning of the launch of the invasion. This group also demonstrates an ability to iteratively improve its tools,
including its signature use of trident downloaders to deploy Korplug.

For any inquiries about our research published on WeLiveSecurity, please contact us at threatintel@eset.com.
ESET Research now also offers private APT intelligence reports and data feeds. For any inquiries about this service, visit the ESET Threat
Intelligence page.

IoCs

SHA-1 Filename ESET detection name Description

69AB6B9906F8DCE03B43BEBB7A07189A69DC507B coreclr.dll Win32/Agent.ADMW Korplug loader.

10AE4784D0FFBC9CD5FD85B150830AEA3334A1DE N/A Win32/Korplug.TC Decrypted Korpl
(dumped from
memory).

69AB6B9906F8DCE03B43BEBB7A07189A69DC507B coreclr.dll Win32/Agent.ADMW Korplug loader.

4EBFC035179CD72D323F0AB357537C094A276E6D PowerDVD18.exe Win32/Delf.UTN Korplug loader.

FDBB16B8BA7724659BAB5B2E1385CFD476F10607 N/A Win32/Korplug.TB Decrypted Korpl
(dumped from
memory).

7E059258CF963B95BDE479D1C374A4C300624986 N/A Win32/Korplug.TC Decrypted Korpl
(dumped from
memory).

7992729769760ECAB37F2AA32DE4E61E77828547 SHELLSEL.ocx Win32/Agent.ADMW Korplug loader.

F05E89D031D051159778A79D81685B62AFF4E3F9 SymHp.exe Win32/Delf.UTN Korplug loader.

AB01E099872A094DC779890171A11764DE8B4360 BoomerangLib.dll Win32/Korplug.TH Korplug loader.

CDB15B1ED97985D944F883AF05483990E02A49F7 PotPlayer.dll Win32/Agent.ADYO Korplug loader.

908F55D21CCC2E14D4FF65A7A38E26593A0D9A70 SmadHook32.dll Win32/Agent.ADMW Korplug loader.

477A1CE31353E8C26A8F4E02C1D378295B302C9E N/A Win32/Agent.ADMW Korplug loader.

52288C2CDB5926ECC970B2166943C9D4453F5E92 SmadHook32c.dll Win32/Agent.ADMW Korplug loader.

CBD875EE456C84F9E87EC392750D69A75FB6B23A SHELLSEL.ocx Win32/Agent.ADMW Korplug loader.

2CF4BAFE062D38FAF4772A7D1067B80339C2CE82 Adobe_Caps.dll Win32/Agent.ADMW Korplug loader.

97C92ADD7145CF9386ABD5527A8BCD6FABF9A148 DocConvDll.dll Win32/Agent.ADYO Korplug loader.

39863CECA1B0F54F5C063B3015B776CDB05971F3 N/A Win32/Korplug.TD Decrypted Korpl
(dumped from
memory).

0D5348B5C9A66C743615E819AEF152FB5B0DAB97 FontEDL.exe clean Vulnerable
legitimate Font
File Generator
executable.

http://10.10.0.46/mailto:threatintel@eset.com
https://www.eset.com/int/business/services/threat-intelligence/

11/14

SHA-1 Filename ESET detection name Description

C8F5825499315EAF4B5046FF79AC9553E71AD1C0 Silverlight.Configuration.exe clean Vulnerable
legitimate
Microsoft
Silverlight
Configuration
Utility executable

D4FFE4A4F2BD2C19FF26139800C18339087E39CD PowerDVDLP.exe clean Vulnerable
legitimate
PowerDVD
executable.

65898ACA030DCEFDA7C970D3A311E8EA7FFC844A Symantec.exe clean Vulnerable
legitimate
Symantec
AntiVirus
executable.

7DDB61872830F4A0E6BF96FAF665337D01F164FC Adobe Stock Photos
CS3.exe

clean Vulnerable
legitimate Adobe
Stock Photos
executable.

C13D0D669365DFAFF9C472E615A611E058EBF596 COVID-19 travel restrictions
EU reviews list of third
countries.exe

Win32/Agent_AGen.NJ Downloader.

062473912692F7A3FAB8485101D4FCF6D704ED23 REGULATION OF THE
EUROPEAN PARLIAMENT
AND OF THE
COUNCIL.exe

Win32/TrojanDownloader.Agent.GDL Downloader.

2B5D6BB5188895DA4928DD310C7C897F51AAA050 log.dll Win32/Agent.ACYW Korplug loader.

511DA645A7282FB84FF18C33398E67D7661FD663 2.exe Win32/Agent.ADPL Korplug loader.

59002E1A58065D7248CD9D7DD62C3F865813EEE6 log.dll Win32/Agent.ADXE Korplug loader.

F67C553678B7857D1BBC488040EA90E6C52946B3 KINGSTON.exe Win32/Agent.ADXZ Korplug Loader.

58B6B5FD3F2BFD182622F547A93222A4AFDF4E76 PotPlayer.exe clean Vulnerable
legitimate
executable.

Network

Domain IP First seen Notes

103.56.53[.]120 2021‑06‑15 Korplug C&C

154.204.27[.]181 2020‑10‑05 Korplug C&C.

43.254.218[.]42 2021‑02‑09 Download server.

45.131.179[.]179 2020‑10‑05 Korplug C&C.

176.113.69[.]91 2021-04-19 Korplug C&C.

upespr[.]com 45.154.14[.]235 2022-01-17 Download server.

urmsec[.]com 156.226.173[.]23 2022‑02‑23 Download server.

101.36.125[.]203 2021-06-01 Korplug C&C.

185.207.153[.]208 2022‑02‑03 Download server.

154.204.27[.]130 2021-12-14 Korplug C&C.

92.118.188[.]78 2022-01-27 Korplug C&C.

zyber-i[.]com 107.178.71[.]211 2022-03-01 Download server.

locvnpt[.]com 103.79.120[.]66 2021-05-21 Download server. This domain was previously used in a 2020 campaign documented by
Recorded Future.

https://www.recordedfuture.com/reddelta-cyber-threat-operations/

12/14

MITRE ATT&CK techniques

This table was built using version 10 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1583.001 Acquire Infrastructure: Domains Mustang Panda has registered
domains for use as download servers.

T1583.003 Acquire Infrastructure:
Virtual Private Server

Some download servers used by Mustang Panda
appear to be on shared hosting.

T1583.004 Acquire Infrastructure:
Server

Mustang Panda uses servers that appear to be
exclusive to the group.

T1587.001 Develop Capabilities:
Malware

Mustang Panda has developed custom loader and
Korplug versions.

T1588.006 Obtain Capabilities:
Vulnerabilities

Multiple DLL hijacking vulnerabilities are used in the
deployment process.

T1608.001 Stage Capabilities:
Upload Malware

Malicious payloads are hosted on the download
servers.

Execution T1059.003 Command and Scripting Interpreter: Windows
Command Shell

Windows command shell is used to
execute commands sent by the C&C
server.

T1106 Native API Mustang Panda uses CreateProcess and
ShellExecute for execution.

T1129 Shared Modules Mustang Panda uses LoadLibrary to load additional
DLLs at runtime. The loader and RAT are DLLs.

T1204.002 User Execution:
Malicious File

Mustang Panda relies on the user executing the initial
downloader.

T1574.002 Hijack Execution Flow:
DLL Side-Loading

The downloader obtains and launches a vulnerable
application so it loads and executes the malicious
DLL that contains the second stage.

Persistence T1547.001 Boot or Logon Autostart Execution: Registry Run
Keys / Startup Folder

Korplug can persist via registry Run
keys.

T1053.005 Scheduled Task/Job:
Scheduled Task

Korplug can persist by creating a scheduled task that
runs on startup.

Defense
Evasion

T1140 Deobfuscate/Decode Files or Information The Korplug file is encrypted and only
decrypted at runtime, and its
configuration data is encrypted with
XOR.

T1564.001 Hide Artifacts: Hidden
Files and Directories

Directories created during the installation process are
set as hidden system directories.

T1564.003 Hide Artifacts: Hidden
Window

Korplug can run commands on a hidden desktop.
Multiple hidden windows are used during the
deployment process.

T1070 Indicator Removal on
Host

Korplug’s uninstall command deletes registry keys
that store data and provide persistence.

T1070.004 Indicator Removal on
Host: File Deletion

Korplug can remove itself and all created directories.

T1070.006 Indicator Removal on
Host: Timestomp

When writing to a file, Korplug sets the file’s
timestamps to their previous values.

T1036.004 Masquerading:
Masquerade Task or
Service

Scheduled tasks created for persistence use
legitimate-looking names.

T1036.005 Masquerading: Match
Legitimate Name or
Location

File and directory names match expected values for
the legitimate app that is abused by the loader.

T1112 Modify Registry Korplug can create, modify, and remove registry
keys.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v10/techniques/T1583/001
https://attack.mitre.org/versions/v10/techniques/T1583/003
https://attack.mitre.org/versions/v10/techniques/T1583/004
https://attack.mitre.org/versions/v10/techniques/T1587/001
https://attack.mitre.org/versions/v10/techniques/T1588/006
https://attack.mitre.org/versions/v10/techniques/T1608/001
https://attack.mitre.org/versions/v10/techniques/T1059/003
https://attack.mitre.org/versions/v10/techniques/T1106
https://attack.mitre.org/versions/v10/techniques/T1129
https://attack.mitre.org/versions/v10/techniques/T1204/002
https://attack.mitre.org/versions/v10/techniques/T1574/002
https://attack.mitre.org/versions/v10/techniques/T1547/001
https://attack.mitre.org/versions/v10/techniques/T1053/005
https://attack.mitre.org/versions/v10/techniques/T1140
https://attack.mitre.org/versions/v10/techniques/T1564/001
https://attack.mitre.org/versions/v10/techniques/T1564/003
https://attack.mitre.org/versions/v10/techniques/T1070
https://attack.mitre.org/versions/v10/techniques/T1070/004
https://attack.mitre.org/versions/v10/techniques/T1070/006
https://attack.mitre.org/versions/v10/techniques/T1036/004
https://attack.mitre.org/versions/v10/techniques/T1036/005
https://attack.mitre.org/versions/v10/techniques/T1112

13/14

Tactic ID Name Description

T1027 Obfuscated Files or
Information

Some downloaded files are encrypted and stored as
hexadecimal strings.

T1027.005 Obfuscated Files or
Information: Indicator
Removal from Tools

Imports are hidden by dynamic resolution of API
function names.

T1055.001 Process Injection:
Dynamic-link Library
Injection

Some versions of the Korplug loader inject the
Korplug DLL into a newly launched process.

T1620 Reflective Code Loading Korplug parses and loads itself into memory.

Discovery T1083 File and Directory Discovery Korplug can list files and directories
along with their attributes and content.

T1082 System Information
Discovery

Korplug collects extensive information about the
system including uptime, Windows version, CPU
clock rate, amount of RAM and display resolution.

T1614 System Location
Discovery

Korplug retrieves the system locale using
GetSystemDefaultLCID.

T1016 System Network
Configuration Discovery

Korplug collects the system hostname and IP
addresses.

T1016.001 System Network
Configuration Discovery:
Internet Connection
Discovery

The downloader pings Google’s DNS server to check
internet connectivity.

T1033 System Owner/User
Discovery

Korplug obtains the current user’s username.

T1124 System Time Discovery Korplug uses GetSystemTime to retrieve the current
system time.

Collection T1005 Data from Local System Korplug collects extensive data about
the system it’s running on.

T1025 Data from Removable
Media

Korplug can collect metadata and content from all
mapped drives.

T1039 Data from Network
Shared Drive

Korplug can collect metadata and content from all
mapped drives.

Command
and Control

T1071.001 Application Layer Protocol: Web Protocols Korplug can make the initial handshake
over HTTPS.

T1095 Non-Application Layer
Protocol

C&C communication is done over a custom TCP-
based protocol.

T1573.001 Encrypted Channel:
Symmetric Cryptography

C&C communication is encrypted using RC4.

T1008 Fallback Channels The Korplug configuration contains fallback C&C
servers.

T1105 Ingress Tool Transfer Korplug can download additional files from the C&C
server.

T1571 Non-Standard Port When Hodur performs its initial handshake over
HTTPS, it uses the same port (specified in the
configuration) as for the rest of the communication.

T1132.001 Data Encoding: Standard
Encoding

Korplug compresses transferred data using LZNT1.

Exfiltration T1041 Exfiltration Over C2 Channel Data exfiltration is done via the same
custom protocol used to send and
receive commands.

https://attack.mitre.org/versions/v10/techniques/T1027
https://attack.mitre.org/versions/v10/techniques/T1027/005
https://attack.mitre.org/versions/v10/techniques/T1055/001
https://attack.mitre.org/versions/v10/techniques/T1620
https://attack.mitre.org/versions/v10/techniques/T1083
https://attack.mitre.org/versions/v10/techniques/T1082
https://attack.mitre.org/versions/v10/techniques/T1614
https://attack.mitre.org/versions/v10/techniques/T1016
https://attack.mitre.org/versions/v10/techniques/T1016/001
https://attack.mitre.org/versions/v10/techniques/T1033
https://attack.mitre.org/versions/v10/techniques/T1124
https://attack.mitre.org/versions/v10/techniques/T1005
https://attack.mitre.org/versions/v10/techniques/T1025
https://attack.mitre.org/versions/v10/techniques/T1039
https://attack.mitre.org/versions/v10/techniques/T1071/001
https://attack.mitre.org/versions/v10/techniques/T1095/
https://attack.mitre.org/versions/v10/techniques/T1573/001
https://attack.mitre.org/versions/v10/techniques/T1008
https://attack.mitre.org/versions/v10/techniques/T1105
https://attack.mitre.org/versions/v10/techniques/T1571
https://attack.mitre.org/versions/v10/techniques/T1132/001
https://attack.mitre.org/versions/v10/techniques/T1041

14/14

23 Mar 2022 - 09:00AM

Sign up to receive an email update whenever a new article is published in our Ukraine Crisis – Digital Security
Resource Center

Newsletter

Discussion

https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=mustang-panda-hodur-old-tricks-new-korplug-variant
https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

