
1/12

Storm Cloud on the Horizon: GIMMICK Malware Strikes at
macOS

volexity.com/blog/2022/03/22/storm-cloud-on-the-horizon-gimmick-malware-strikes-at-macos/

March 22, 2022

by Damien Cash, Steven Adair, Thomas Lancaster

In late 2021, Volexity discovered an intrusion in an environment monitored as part of its
Network Security Monitoring service. Volexity detected a system running frp, otherwise
known as fast reverse proxy, and subsequently detected internal port scanning shortly
afterward. This traffic was determined to be unauthorized and the system, a MacBook Pro
running macOS 11.6 (Big Sur), was isolated for further forensic analysis. Volexity was able to
run Surge Collect to acquire system memory (RAM) and select files of interest from the
machine for analysis. This led to the discovery of a macOS variant of a malware implant
Volexity calls GIMMICK. Volexity has encountered Windows versions of the malware family
on several previous occasions.

GIMMICK is used in targeted attacks by Storm Cloud, a Chinese espionage threat actor
known to attack organizations across Asia. It is a feature-rich, multi-platform malware family
that uses public cloud hosting services (such as Google Drive) for command-and-control
(C2) channels. The newly identified macOS variant is written primarily in Objective C, with
Windows versions written in both .NET and Delphi. Despite core differences in programming

https://www.volexity.com/blog/2022/03/22/storm-cloud-on-the-horizon-gimmick-malware-strikes-at-macos/
https://github.com/fatedier/frp
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/blog/2020/03/31/storm-cloud-unleashed-tibetan-community-focus-of-highly-targeted-fake-flash-campaign/

2/12

languages used and operating systems targeted, Volexity tracks the malware under the
same name due to shared C2 architecture, file paths, and behavioral patterns used by all
variants.

Figure 1. The GIMMICK workflow

This blog post provides an in-depth analysis of the macOS variant of GIMMICK, but
also demonstrates the features and characteristics of the Windows variant. Volexity
discovered this sample through memory analysis of the compromised system and was able
to recover the implant from both memory and disk. The file name and install path were
unique to the victim system and had been configured in a manner designed to blend in with
job functions of the user. Additionally, GIMMICK was configured to only communicate with its
Google Drive-based C2 server on working days in order to further blend in with network
traffic in the target environment.

The SHA1 hash of the file Volexity was able to obtain from disk was
“fe3a3e65b86d2b07654f9a6104c8cb392c88b7e8”.

Volexity worked closely with Apple to add protections for the GIMMICK malware across their
userbase. On March 17, 2022, Apple pushed new signatures to XProtect and MRT to block
and remove GIMMICK. Though on by default, users can confirm they are automatically
protected by verifying the "Install system data files and security updates” box is checked in
their Settings (instructions can be found here).

https://support.apple.com/guide/mac-help/get-macos-updates-mchlpx1065/mac

3/12

Startup and Initialization

On macOS, GIMMICK was found to support being launched as a daemon on the system or
by a user. Should GIMMICK be launched directly by a user, rather than a daemon, it will
install itself as a launch agent by dropping a PLIST file with contents, similar to that shown
below, to /Users/<username>/Library/LaunchAgents. The name of the binary, PLIST, and
agent will vary per sample. In the case observed by Volexity, the implant was customized to
imitate an application commonly launched by the targeted user. It is worth noting that the
Windows versions of GIMMICK Volexity has observed have no concept of setting their own
persistence.

4/12

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Label</key>

<string>com. /[applicationname].va.plist</string>

<key>ProgramArguments</key>

<array>

<string>/Users/#####/Library/Preferences/[pathto/binary]>/</string>

</array>

<key>RunAtLoad</key>

<true/>

<key>StartInterval</key>

<integer>30</integer>

<key>ThrottleInterval</key>

<integer>2</integer>

<key>WorkingDirectory</key>

<string>/Users/<removed>/Library/Preferences/[applicationname]string>

</dict>

</plist>

Likewise, the implant provides an uninstall function accessible by adding the argument
“uninstall” on the command line. This removes the implant and all associated files, and then
kills the process.

During initialization, the sample decodes several pieces of data critical to the malware
operation using a rotating addition algorithm.

5/12

The first decoding loop results in a JSON object containing OAuth2 credentials for
establishing a session to Google Drive. An example JSON object is shown in Figure 2:

Figure 2. An example JSON object containing credentials required to authenticate with
Google Drive

The second loop decodes the 32-byte string “943c3743f72f06e58e60fa147481db83”. This
string is run through an additional conversion stage that converts two characters at a time
into a numeric representation and writes the resulting byte to a buffer. This buffer is used as
an AES key in several calls to CCCrypt() function.

https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/CCCrypt.3cc.html

6/12

Figure 3. AES key conversion

The final decode is done in place and its result is a 200-byte binary blob of configuration
data, with only a few seemingly visible data boundaries.

Figure 4: Config blob

Outside of this data obfuscation, and the use of AES for certain external files, the malware
makes little attempt to obfuscate its functionality or presence on the system.

7/12

C2 Protocol

Post initialization, the operation of the GIMMICK malware is highly asynchronous. Prior
variants of the malware written for Windows have managed this using thread pool techniques
internal to the program, provided by Delphi’s System.Threading.TThreadPool and .NET’s
System.Thread and System.Action. The macOS variant, however, manages the protocol
using Apple's Grand Central Dispatch (GCD) technology. This feature allows developers to
distribute tasks to a system-managed pool of threads for later processing. These tasks are
encapsulated into self-contained objects called blocks which are scheduled on dispatch
queues for processing. The precise structures and implementation details of GCD are fairly
complicated and beyond the scope of this document; several resources are provided in the
Appendix.

There are three custom ObjectiveC classes in the malware that manage critical aspects of
the C2 protocol: DriveManager, FileManager, and GCDTimerManager.

DriveManager has several responsibilities:

Manage the Google Drive and proxy sessions.
Maintain a local map of the Google Drive directory hierarchy in memory.
Manage locks for synchronizing tasks on the Google Drive session.
Handle download and upload tasks to and from the Google Drive session.

Based on the way command files are enumerated by the malware, the Google Drive appears
to be populated with a directory for each infected host. The name of this directory differs
slightly by platform. Windows implants generate a unique GUID to operate as their ID, while
the macOS implant uses Apple's own Hardware UUID for the task.

FileManager manages a local directory hierarchy containing C2 information and command
tasks in various stages of completion. Older variants of GIMMICK used slightly different
names for directories, but they have remained consistent across several recent variants. The
macOS implant stores this hierarchy in the root directory of the application’s main bundle in a
directory named “MGD”. Each folder within the directory structure is designated for holding a
single type of file as it moves through the C2 process. A summary all directories and their
purpose are given in the table below.

Name Interpreted
Meaning

Contents

tmp Temporary Temporary safe location for writing files; no dispatch code is
checking files in this directory

c Credentials Stores the AES- encrypted credentials JSON decoded during
initialization

https://en.wikipedia.org/wiki/Grand_Central_Dispatch
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/WorkingwithBlocks/WorkingwithBlocks.html
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html

8/12

Name Interpreted
Meaning

Contents

e Errors Stores error logs as individual files; errors are reported as opaque
integral values of usually four digits

p Proxies Stores proxy definition files consisting of a host and port separated
by a ":"

u Upload
Command

Stored AES-encrypted command results pending upload

d Download
Command

Stores pending download command files, each containing the
Google Drive path of a command file to be downloaded

ds Download
Success

Storage location for downloaded AES-encrypted command files
awaiting processing

df Download
Failed

Temporary location for failed download command until they can be
retried or cleared

l List
Command

Stores pending list of command files that indicate the directory of
the Google Drive from which to download commands

ls List
Success

Stores temporary listing files containing paths of remote Google
Drive files to be download

lf List Failed Temporary location for failed list commands until they can be retried
or cleared

Not all variants of GIMMICK use all directories. For instance, the macOS implant does not
use the "df" directory, and it creates, but does not access, the "lf" and "p" directories.

GCDTimerManager manages the various GCD objects that ensure the regular dispatching of
work for the implant and holds collections of the dispatch timers along with their
corresponding blocks. The malware creates several named dispatch queues for managing
specific C2-related tasks:

Name Purpose

SendBaseinfoQueue Regularly generates and sends a system reconnaissance
heartbeat message to the C2 containing the following:

Hardware UUID
MAC address of the eth0 interface
CPU model string
OS Version string

list_request_queue Generates a list request file in the "l" directory containing a path
in the format “/<HardwareUUID>”

9/12

Name Purpose

ls_cmd_queue Parses files from the "ls" directory and for each line, writes a
corresponding download command file to the "d" directory

ReadCmdQueue Decrypts and parses files from the "ds" directory, and executes
the commands contained within, saving results to the "u"
directory

CredsCheck Checks for timeout of the Google Drive session, and re-
authenticates if necessary

DriveClearTrashQueue Regularly deletes the Google Drive trash file

DriveDownQueue Parses files stored in the "d", and downloads corresponding files
from Google Drive to the "ds" directory

DriveUploadQueue Uploads feedback files stored in the "u" directory

DriveFailUploadQueue Second attempt to upload any failed upload items. Second
attempt is marked successful regardless of result.

fileListQueue Parses files stored in the "l" directory and for each, updates the
DriveManager’s directory map of the Google Drive, and
generates a listing of files to download in the "ls" directory

In addition, GCDTimerManager uses the static config information decoded during
initialization to set a work period for the implant, limiting off-hour connections that might draw
defender attention. It parses the work period from the string at the very start of the config
data. This string starts with a set of single-digit numbers separated by hyphen characters,
followed by two colon characters and two two-digit numbers separated again by a hyphen.
The first set of numbers indicate the day number the malware will be active, with day 0 being
Sunday. The second set of two-digit numbers indicate the range of active hours. Taking the
initial value of “1-2-3-4-5::00-23”, the implant will be active from 12AM to 11PM on weekdays
—this is the first data seen in the Configuration blob shown in Figure 4.

Command Lifetime

Due to the asynchronous nature of the malware operation, command execution requires a
staged approach. Though the individual steps occur asynchronously, every command follows
the same steps:

1. An encrypted payload is uploaded by the attacker to the Google Drive.
2. The dispatch timer on “list_request_queue” triggers.

New request file to be written to the "l" directory

10/12

3. The dispatch timer on te “fileListQueue” triggers.
Reads the list request from the "l" directory
Updates the DriveManager state from the Google Drive session
Drops a listing file to the "ls" directory

4. The dispatch timer on “ls_cmd_queue” triggers.
Parses the listing files from the "ls" directory
Drops download command files for each remote file in the "d" directory
Deletes listing files from the "ls" directory

5. The dispatch timer on “DriveDownloadQueue” triggers.
Enumerates the files in the "d" directory
Queues the download of command files to the "ds" directory
Queues deletion of remote Google Drive file and local download command file
after download is complete

6. The dispatch timer on “ReadCmdQueue” triggers.
Reads and decrypts command files from "ds" directory
Handles command execution
Deletes local command file
Writes encrypted “feedback” files to "u" directory

7. The dispatch timer on “DriveUploadQueue” triggers.
Enumerates the files in the "u" directory
Queues the upload of the result files
Queues the deletion of local result files once upload is completed

Commands and Feedback

Commands reach the system as encrypted files in the "ds" directory which, once decrypted
with the implant's static AES key, result in a JSON object. There are only four JSON fields
read by the command parser.

Name Type

CMDType Number

content String

params String

savepath String

While each command JSON must have a CMDType field, the fields required vary from
command to command. The table below summarizes the available commands and their
required fields.

11/12

Enum Description Additional Required JSON
Fields

Enum Description Additional Required JSON
Fields

0 Transmit base system information None

1 Upload file to C2 params

2 Download file to client content, savepath

3 Execute a shell command and write output to C2 params

4 Set client Google Drive timer interval params

5 Set client timer interval for client info heartbeat
message

params

6 Overwrite client work period information params

Feedback to the C2 is also formatted as JSON, with fields fairly similar to the commands.
However, all feedback JSON objects have one additional required field, “uuid”, which is
populated with the device's Hardware UUID.

Conclusion

Storm Cloud is an advanced and versatile threat actor, adapting its tool set to match
different operating systems used by its targets. They make use of built-in operating system
utilities, open-source tools, and custom malware implants to achieve their objectives.
Leveraging cloud platforms for C2, such as using Google Drive, increases the likelihood of
operating undetected by network monitoring solutions. This is especially true when coupled
with the fact that the malware only beacons on victims' working days.

Irrespective of platform, samples of the GIMMICK malware family are fairly large and
complex, which is partly due to the complexity of their asynchronous design, such as the
threading and locking mechanisms required. The work involved in porting this malware and
adapting its systems to a new operating system (macOS) is no light undertaking and
suggests the threat actor behind it is well resourced, adept, and versatile. It is worth noting
that Volexity has only ever observed GIMMICK (macOS and Windows) in use by Storm
Cloud. However, it is unknown if this malware implant is developed or otherwise used by
them exclusively.

To generally prevent similar attacks from being successful, Volexity recommends the
following:

Regularly audit and monitor persistence locations, such as LaunchAgents and
LaunchDaemons on endpoint macOS devices. This can be done through an EDR
solution and/or with free tools such as BlockBlock and KnockKnock.
Monitor network traffic for anomalous proxy activity and internal scanning.

https://objective-see.com/products/blockblock.html
https://objective-see.com/products/knockknock.html

12/12

Ensure that XProtect and MRT from Apple are enabled and running on macOS
systems.

To prevent these specific attacks from being successful, Volexity recommends the following:

Use the rules provided to identify related activity, provided here.

Files related to this post are provided here.

This threat activity was detailed to Volexity Threat Intelligence customers in MAR-20220120.

Appendix

The following resources describe Apple's Grand Central Dispatch:

https://github.com/volexity/threat-intel/blob/main/2022/2022-03-22%20GIMMICK/indicators/yara.yar
https://github.com/volexity/threat-intel/tree/main/2022/2022-03-22%20GIMMICK/attachments

