Have Your Cake and Eat it Too? An Overview of UNC2891

l mandiant.com/resources/unc2891-overview

The Mandiant Advanced Practices team previously published a threat research blog post that provided an overview of UNC1945 operations

where the actor compromised managed services providers to gain access to targets in the financial and professional consulting industries.

Since that time, Mandiant has investigated and attributed several intrusions to a threat cluster we believe has a nexus to this actor, currently
being tracked as UNC2891. Through these investigations, Mandiant has discovered additional techniques, malware, and utilities being used by
UNC2891 alongside those previously observed in use by UNC1945. Despite having identified significant overlaps between these threat
clusters, Mandiant has not determined they are attributable to the same actor.

« UNC2891 intrusions appear to be financially motivated and in some cases spanned several years through which the actor had remained
largely undetected.

« UNC2891 demonstrated fluency and expertise in Unix and Linux environments, mostly through the targeting of Oracle Solaris based
systems with TINYSHELL and SLAPSTICK backdoors.

+ Mandiant observed UNC2891 operate with a high degree of OPSEC and leverage both public and private malware, utilities, and scripts
to remove evidence and hinder response efforts.

» Mandiant discovered a previously unknown rootkit for Oracle Solaris systems that UNC2891 used to remain hidden in victim networks,
we have named this CAKETAP.

¢ One Variant of CAKETAP manipulated messages transiting a victims Automatic Teller Machine (ATM) switching network. It is believed
this was leveraged as part of a larger operation to perform unauthorized cash withdrawals at several banks using fraudulent bank cards.

Extensive Use of SLAPSTICK and TINYSHELL Backdoors

Like past UNC1945 intrusions, Mandiant observed UNC2891 make extensive use of the Pluggable Authentication Module (PAM) based
backdoor we track as SLAPSTICK to aid with credential harvesting, and to provide backdoor access to compromised machines in victim
networks. As detailed in our previous blog_post, SLAPSTICK provides persistent backdoor access to infected systems with a hard-coded
magical password, it also logs authentication attempts and corresponding passwords in an encrypted log file. Although this is expected to have
tremendously assisted UNC2891 with credential harvesting and lateral movement activities, it also provided valuable information to Mandiant
Incident Responders. Although SLAPSTICK log files were often timestomped, Mandiant was able to decode them and trace some of the
actor’s lateral movement activities through the usage of the backdoor provided magical password.

2021Jan1614:10:06 /fusr/sbin/sshd sshd userl plaintextpassword serverl Authentication failure
20211an1822:50:45 Jusr/sbin/sshd sshd root rBadIZpFABIH]67rWONNK29 172.16.10.10 Magical password
20211an1909:27:11 Jusr/sbin/sshd sshd user2 plaintextpassword server2 Authentication failure .
2021 Feb 0205:41:43 /usr/bin/passwd passwd root plaintextpassword Success F|gure 1: Example SLAPSTICK decoded |og
2021Feb 0421:03:32 Jusr/sbin/sshd sshd user3 plaintextpassword 10.10.10.101 Authentication failure
2021 Mar 22 20:15:06 Jusr/sbin/sshd sshd userd plaintextpassword 10.10.10.102 Success
2021Mar2318:19:12 /usr/sbin/sshd sshd users plaintextpassword server3 Authentication failure

(fabricated)

1/8

https://www.mandiant.com/resources/unc2891-overview
https://www.mandiant.com/resources/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/live-off-the-land-an-overview-of-unc1945

Alongside SLAPSTICK, UNC2891 often installed a custom variant of the publicly available TINYSHELL backdoor. UNC2891 TINYSHELL
backdoors leveraged an external encrypted configuration file and some variants included additional functionality, such as the ability to
communicate via a HTTP proxy with basic authentication. In line with the group’s familiarity with Unix and Linux based systems, UNC2891
often named and configured their TINYSHELL backdoors with values that masqueraded as legitimate services that might be overlooked by
investigators, such as systemd (SYSTEMD), name service cache daemon (NCSD), and the Linux at daemon (ATD).

Table 1: Observed TINYSHELL file paths

TINYSHELL Backdoor File Paths TINYSHELL Configuration File Paths

Jusr/lib/libhelpx.so0.1 /usr/lib/libatdcf.so
Jusr/lib/systemd/systemd-helper /usr/lib/libnscd.so.1
/usr/sbin/nscd Jusr/lib/libsystemdcf.so

/var/ntp/ntpstats/1

Table 2: Example decoded TINYSHELL configuration (systemd variant)

Example Decoded configuration

pm_systemd_mag <32-character string>
systemd_nme <system id>
pm_systemd_adr <C2 IP address/domain>
pm_systemd_prt <443 or 53>
pm_systemd_tme 300

systemd_non1 none

systemd_non2 none

systemd_non3 none

systemd_non4 none

In the case of the systemd variant, UNC2891 also leveraged systemd service unit files for persistence of the TINYSHELL backdoor.

Table 3: Service unit file used for TINYSHELL persistence

/usr/lib/systemd/system/systemd-helper.service

[Unit]

Description=Rebuild Hardware Database
[Service]

Type=forking
ExecStart=/lib/systemd/systemd-helper
[Install]

WantedBy=multi-user.target

Based on analyzed configurations, UNC2891 had configured TINYSHELL backdoors in a multi-hop structure that leveraged several
compromised internal servers for command and control. In one case, Mandiant found evidence that suggests the actor had chained different
TINYSHELL variants together to obtain remote access to a server inside a network segment with network restrictions.

To keep their network of TINYSHELL connections hidden, UNC2891 had installed and configured a rootkit to filter out these connections from
network connection related APIs (keep reading for details on the CAKETAP rootkit). UNC2891 configured remotely accessible systems with
TINYSHELL backdoors that used dynamic DNS domains for their external command and control channel. These domains were created per-
host and were not used more than once, the subdomains sometimes resembled the hostname of the compromised machine. Mandiant was
unable to collect passive DNS data for these dynamic DNS domains, suggesting that UNC2891 had likely enabled IP resolution for short

2/8

https://github.com/creaktive/tsh

periods of time when access to the network was required. At one victim, these TINYSHELL backdoors were configured to perform
communications using TCP over port 53 and 443, likely as a mechanism to bypass outbound network protections, blend in with existing traffic,
and evade detection.

Dynamic DNS
C2 Domains

Common
Compromised Server

T CIZ Figure 2: Example of TINYSHELL command and

TINYSHELL

HTTP PROXY Compromised Server Compromised Server

DA CAKETAP
Q Rootkit

[sLapsTick

‘I‘ Backdoor

ATM Switch
control used by UNC2891

STEELHOUND, STEELCORGI and Environment Variable Keying

UNC2891 often made use of the STEELCORGI in-memory dropper which decrypts its embedded payloads by deriving a ChaCha20 key from
the value of an environment variable obtained at runtime. In many cases, Mandiant was unable to recover the requisite environment variables
to decrypt the embedded payloads. However, in the limited samples we were able to decrypt, UNC2891 had deployed different versions of an
extensive toolkit which appears to be developed under the name SUN4ME. SUN4ME contains tools for network reconnaissance, host
enumeration, exploitation of known vulnerabilities, log wiping, file operations, as well as common shell utilities. Yoroi has previously published
information about this toolkit following our previous blog post on UNC1945'’s usage of STEELCORGI.

Mandiant discovered UNC2891 leveraging a similar in-memory dropper that also used environment variables to decrypt its embedded payload
but instead relied on RC4 encryption, we have named this STEELHOUND. In addition to functioning as dropper for an embedded payload,
STEELHOUND is also able to encrypt new payloads by encrypting a target binary and writing it to disk along with a copy of itself and an end-
of-file configuration.

WINGHOOK and WINGCRACK

During these investigations, Mandiant also discovered a family of keylogger malware we have named WINGHOOK and WINGCRACK.

« WINGHOOK is a keylogger for Linux and Unix based operating systems. It is packaged as a shared library (SO file) that hooks the read
and fgets functions, which are two common functions used for processing user input. The captured data is stored in an encoded format in
the directory /var/tmp/ with a filename that begins with .zmanDw.

« WINGCRACK is a utility that can decode and display the content of files containing encoded keylog data from WINGHOOK. The malware
author appears to refer to these encoded files as “schwing” files.

Utilities Observed

Mandiant previously observed UNC1945 use a large amount of different public and private tools during their intrusions, and this was also true
for UNC2891. Mandiant discovered additional utilities that were leveraged by UNC2891:

« BINBASH is a simple ELF utility that executes a shell after setting the group ID and user ID to either "root" or specified values. BINBASH
appears to be a compilation of the source code.

3/8

https://yoroi.company/research/opening-steelcorgi-a-sophisticated-apt-swiss-army-knife/
https://www.mandiant.com/resources/live-off-the-land-an-overview-of-unc1945
https://packetstormsecurity.com/files/23336/Slx2k001.txt.html

 WIPERIGHT is an ELF utility that clears specific log entries on Linux and Unix based systems. It can remove entries associated with a
given user in the lastlog, utmp/utmpx, wtmp/wtmpx, and pacct logs. It appears to have originated from available source code, and
possibly a more recent version.

« MIGLOGCLEANER is another ELF utility that wipes logs or remove certain strings from logs on Linux and Unix based systems. It is
publicly available on GitHub.

Whilst seemingly uncommon amongst threat actors, UNC2891 frequently used the uuencoding scheme to encode and decode files, such as
malware binaries or files containing output from extensive host enumeration scripts. The actor often leveraged simple Perl wrapper scripts that
performed uuencoding and uudecoding functions.

CAKETAP

CAKETAP is a kernel module rootkit that UNC2891 deployed on key server infrastructure running Oracle Solaris. CAKETAP can hide network
connections, processes, and files. During initialization, it removes itself from the loaded modules list and updates the /last_module_id with the
previously loaded module to hide its presence.

A hook is installed into the function ipc/_get_next_conn, as well as several functions in the jp module. This enables CAKETAP to filter out any
connections that match an actor-configured IP address or port (local or remote).

One way to identify CAKETAP running on a Solaris system is to check for the presence of this hook. The following shows an example
command to identify a hooked ipcl_get _next_conn function (Note: The mdb command may require special permissions on the system):

root@solaris:~# echo 'ipcl_get_next_conn::dis -n 0 ; ::quit' | mdb -k

The output in a clean SPARC Solaris system would look similar to the following:

ipcl_get_next_conn: save %sp, -0xb0, %sp

A hooked function would begin with the sethi instruction as follows (the constant 0x77977c00 will change from instance to instance depending
on where CAKETAP is loaded):

ipcl_get_next_conn: sethi %hi(0x11971c00), %g1

Additional hooks are installed into the mkdirat (make directory at) and getdents64 (get directory entries) system calls. CAKETAP uses the
mkdirat hook to receive commands from paths containing the signal string. Commands include configuring network filters, display or update its
configuration, and to unhide itself. The getdents64 hook enables CAKETAP to hide files or directories on the file system containing the secret
signal string. Table 4 contains the signal strings for the CAKETAP hooks.

Table 4: Observed secrets for CAKETAP hooks

Secret Usage
.caahGss187 mkdirat hook signal string
.zaahGss187 getdents64 hook signal string

The mkdirat hook enabled UNC2891 to control and configure CAKETAP through existing backdoor access to compromised servers by issuing
shell commands that leverage these system calls (e.g. mkdir for mkdirat). A single character appended to the signal string indicated which
command was to be executed. The following commands were observed:

Table 5: Observed CAKETAP commands

Command Function

Empty Add the CAKETAP module back to loaded modules list

M Change the signal string for the getdents64 hook

Add a network filter (format <IP>p<PORT>)

4/8

http://www.afn.org/~afn28925/wipe.c
https://packetstormsecurity.com/files/23336/Slx2k001.txt.html
https://github.com/Kabot/mig-logcleaner-resurrected

i Remove a network filter

P Set the current thread TTY to not be filtered by the getdents64 hook
p Set all TTYs to be filtered by the getdents64 hook
S Displays the current configuration

For example, to configure a new network filter and display the current configuration, the following commands might be used:

o mkdir /some/path/.caahGss1871192.168.1.10p80 - Add network filter for 192.168.1.10:80
o mkdir /some/path/.caahGss187S - Display current configuration

The hook installed into getdents64 filtered output to hide presence of the signal string in directory contents.

Mandiant observed UNC2891 load CAKETAP with the module name ipstat from attacker created directories that often resided somewhere
inside the /var directory tree.

CAKETAP Unauthorized Transactions

Memory forensics from one victim’'s ATM switch server revealed a variant of CAKETAP with additional network hooking functionality that
intercepted specific messages relating to card and pin verification. Evidence suggests that this variant of CAKETAP was used as part of an
operation to perform unauthorized transactions using fraudulent bank cards.

This CAKETAP variant targeted specific messages destined for the Payment Hardware Security Module (HSM). This additional network
hooking performed several functions:

1. Manipulation of card verification messages:
CAKETAP altered the mode of certain outgoing messages to disable card verification. This resulted in the HSM not performing the proper
card verification and instead generating a valid response. Fraudulent bank cards generated verification messages using a custom
algorithm using the Primary Account Number (PAN) and other parameters which served as a “marker” for CAKETAP. CAKETAP
examined outgoing messages and if it matched the algorithm, CAKETAP identified the card as fraudulent and stored the PAN in memory
to use in the following step.

2. Replay of PIN verification messages:
CAKETAP examined outgoing PIN verification messages that matched certain conditions and identified those with a Primary Account
Number (PAN) that reflected a fraudulent card. If the message was not for a fraudulent card, it would save the message internally and
send it unmodified, as to not interrupt legitimate ATM PIN verifications. However, if it was for a fraudulent card, CAKETAP would instead
replace the message content with data from a previously saved message. This was effectively a replay attack that resulted in a bypass of
PIN verification for fraudulent cards.

Based on Mandiant’s investigation findings, we believe that CAKETAP was leveraged by UNC2891 as part of a larger operation to successfully
use fraudulent bank cards to perform unauthorized cash withdrawals from ATM terminals at several banks.

Conclusion

UNC2891 maintains a high level of OPSEC and employs several techniques to evade detection. The actor uses their skill and experience to
take full advantage of the decreased visibility and security measures that are often present in Unix and Linux environments. Mandiant expects
that UNC2891 will continue to capitalize on this and perform similar operations for financial gain that target mission critical systems running
these operating systems.

While some of the overlaps between UNC2891 and UNC1945 are notable, it is not conclusive enough to attribute the intrusions to a single
threat group. For example, it is possible that significant portions of UNC2891 and UNC1945 activity are carried out by an entity that is a
common resource to multiple threat actors, which could explain the perceived difference in intrusion objectives—a common malware developer
or an intrusion partner, for example. Regardless, Mandiant is releasing this information on the actor to raise awareness of the fraudulent
activity and aid defenders in uncovering further UNC2891 operations.

YARA

The following YARA rules are not intended to be used on production systems or to inform blocking rules without first being validated through an
organization's own internal testing processes to ensure appropriate performance and limit the risk of false positives. These rules are intended
to serve as a starting point for hunting efforts to identify samples, however, they may need adjustment over time if the malware family changes.

5/8

rule TINYSHELL

{

meta:
author = "Mandiant "

strings:
$sbl =

47 ?? 46 C6 4?7 2?7 00 }

$sb2 =
$ss1 = "fork" ascii fullword wide
$ss2 = "socket" ascii fullword wide
$ss3 = "bind" ascii fullword wide
$ss4 = "listen" ascii fullword wide
$ss5 = "accept" ascii fullword wide
$ss6 = "alarm" ascii fullword wide
$ss7 = "shutdown" ascii fullword wide
$ss8 = "creat" ascii fullword wide
$ss9 = "write" ascii fullword wide
$s510 = "open" ascii fullword wide
$ss11 = "read" ascii fullword wide
$ss12 = "execl" ascii fullword wide
$ss13 = "gethostbyname" ascii fullword wide
$ss14 = "connect" ascii fullword wide

condition:

uint32(0) == 0x464c457f and 1 of ($sb*) and 10 of ($ss*)

{ C6 00 48 C6 4?7 ?? 49 C6 4?7 ?? 49 C6 4?7 ?? 4C C6 4?7 ?? 53 C6 4?7 ?? 45 C6 4?7 ?? 54 C6 4? ?? 3D C6

{ C6 00 54 C6 4? ?? 4D C6 4?7 ?? 45 C6 4?7 ?? 3D C6 4? ?? 52 }

rule TINYSHELL_SPARC

{

meta:

author = "Mandiant"

strings:

$sb xor 1 = { DA GA 80 OC 82 18 40 OD C2 2A 00 OB 96 02 EO 01 98 03 20 01 82 1B 20 04 80
00 98 0B 00 01 C2 4A 00 OB 80 AD® 60 00 32 BF FF F5 C2 OA 00 0B 81 C3 EO 08 }

$sb xor 2 = { C6 4A 00 0O 80 AO EO 0O 02 40 00 OB C8 OA 00 0O 85 38 60 00 C4 09 40 02 84
00 82 00 60 01 80 AD 60 04 83 64 60 00 10 6F FF F5 90 02 20 01 81 C3 EO 08 }

condition:

uint32(0) == 0x464C457F and (uint16(0x10) & 0x0200

of them

}

0x0200) and (uint16(0x12) & 0x0200

AO

18

00 01 82 60 20

80 04 C4 2A 00

0x0200) and 1

6/8

rule SLAPSTI

{

CK

meta:

author = "Mandiant "
strings:

$ss1 = "%Y %b %d %H:%M:%S \x00"

$s52 = "%-23s %-23s %-23s\x00"

$ss3 = "%-23S %-23S %-23S %-23S %-23s %s\x0a\x00"
condition:

(uint32(0) == 0x464c457f) and all of them

rule STEELCORGI

{

meta:

author = "Mandiant "

strings:

$s1 = "\xOO\XFf/\XFFp\xFfrAxffo\xffc\xff/\xffs\xffe\xffl\xfff\xff/\xffe\xffx\xffe\x00"

$s2

"\XOO\XTF/\XFFVAXFfa\XxffrAxff/\xffI\Xxffi\xffb\xff/\xffd\xffb\xffu\xffs\xff/\xffm\xffa\xffc\xffh\xffi\xffn\xffe\xff-

\xFfi\xffd\x00"

$sb1
$sb2

conditio

n:

{ FE 1B 7A DE 23 D1 E9 A1l 1D 7F 9E C1 FD A4 }

{ 3B 8D 4F 45 7C 4F 6A 6C D8 2F 1F B2 19 C4 45 6A 6A }

(uint32(0) ==

0x464c457f) and all of them

Indicators of Compromise

Malware MD5 SHA1 SHA256

Family
STEELCORGI e5791e4d2b479ff1dfee983ca6221a53 e55514b83135c5804786Fa6056c88988ea70e360 95964d669250T0ed161409b93f
STEELCORGI 0845835e18a3ed4057498250d30al11bl €28366c3f29226cb2677d391d41e83f9c690caf7 7d587a5f6f36a74dcfbchaech2
STEELCORGI d985de52b69b60aa08893185029bch31 a3e75e2f700e449ebb62962b28b7c230790dc25d cd06246aff527263e409dd779k
TINYSHELL 4ff6647c44b0417c80974b806b1fbcc3 fa36f10407ed5a6858bd1475d88dd35927492f52 55397addbea8e5efh8e6493f3kL
TINYSHELL 13f6601567523e6a37f131ef2ac4390b 4228d71c042d08840089895bfa6bd594b5299a89 24f459a2752175449939037d6a
TINYSHELL 4e9967558cd042cac8b12f378db14259 018bfe5b9f34108424dd63365a14ab005e249fdd 5f46a25473b9dda834519093cE€
STEELHOUND a4617c9a4bde94e867f063c28d763766 097d3a15510c48cdb738344bdf00082e546827e8 161a2832baba6ff6f9fib52ed8

MITRE ATT&CK

7/8

« Discovery:

T1016:System Network Configuration Discovery
T1018:Remote System Discovery
T1049:System Network Connections Discovery
T1082:System Information Discovery
T1083:File and Directory Discovery
T1135:Network Share Discovery

o Lateral Movement:

o

o

T1021:Remote Services
T1021.004:SSH

o Credential Access:

T1003:0S Credential Dumping
T1003.008:/etc/passwd and /etc/shadow
T1110:Brute Force

T1110.001:Password Guessing
T1552:Unsecured Credentials
T1552.003:Bash History

T1552.004:Private Keys
T1556.003:Pluggable Authentication Modules

Command and Control:

o

o

o

o

o

T1090:Proxy

T1095:Non-Application Layer Protocol
T1105:Ingress Tool Transfer
T1572:Protocol Tunneling
T1573.001:Symmetric Cryptography

Execution:

o

o

o

T1053.001:At (Linux)
T1059:Command and Scripting Interpreter
T1059.004:Unix Shell

Collection:

o

o

o

o

T1056.001:Keylogging
T1560:Archive Collected Data
T1560.001:Archive via Utility
T1560.002:Archive via Library

Defense Evasion:

o

o

o

o

o O O o

o

T1014:Rootkit

T1027:Obfuscated Files or Information
T1070:Indicator Removal on Host
T1070.002:Clear Linux or Mac System Logs
T1070.004:File Deletion

T1070.006:Timestomp
T1140:Deobfuscate/Decode Files or Information
T1480.001:Environmental Keying
T1548.001:Setuid and Setgid

T1620:Reflective Code Loading

« Persistence:

o

o

T1543.002:Systemd Service
T1547.006:Kernel Modules and Extensions

8/8

