
1/17

Reversing Common Obfuscation Techniques 14/03/2022
ferib.dev/blog.php

https://ferib.dev/blog.php?l=post/Reversing_Common_Obfuscation_Techniques&t=t

2/17

Modern software often deploys obfuscation as part of its anti-tampering strategies to prevent
hackers from reversing critical components of the software. They often use multiple
obfuscation techniques to harden against hackers, kind of like a snowball. Adding more
layers of snow increases the size, making it a bigger pain in the ass to penetrate.

In this article, we will have a close look at two common obfuscation techniques to understand
how they work and figure out how to deobfuscate/undo them.

Project UnSnowman

That's right, we will be looking into the two different obfuscation techniques as listed below.

IAT Import Obfuscation

Before we start with the actual obfuscation of the IAT import table, let me explain what
imports really are.

https://ferib.dev/

3/17

What are imports?

One of the first things I'd like to figure out about a program when I'm reversing is where it
invokes the Operating System. In our case, we will focus on Windows 10 as most video
games are only working on a Windows-based operating system. Anyway, for those who
didn't know yet, Windows provides a bunch of important Dynamic Linked Library (DLL) files
that almost every Windows executable uses. These DLLs contain functions that can be
'imported' by Windows executables, allowing them to load and execute the function of a
given DLL.

Why are they important?

Ntdll.dll for example is responsible for almost all memory-related functionality such as
opening a handle to a process (NtOpenProcess), allocating a memory page (NtVirtualAlloc,
NtVirtualAllocEx), querying memory pages (NtVirtualQuery, NtVirtualQueryEx), and a lot
more interesting stuff one may need.

Another such DLL is the ws2_32.dll, which is responsible for almost any network activity by
using one of the following functions:

Socket
Connect / WSAConnect
Send / WSASend
SendTo / WSASendTo
Recv / WSARecv
RecvFrom / WSARecvFrom

Now you may ask, what's the point of knowing this? Well, if you take a binary and throw it
into a disassembler such as IDA, the first thing a person like me does is check all the
imported functions to have a rough idea of what the binary is capable of. For example, when
ws2_32.dll is present in the imports then the binary may connect to the internet.

We may now want to take a deeper look and also check which ws2_32.dll functions are
used. If we take the Socket function and find out where it's called we can check its
arguments, allowing us to easily figure out which protocol and type are used after we google
the function name.

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-socket

4/17

NOTE: IDA has automatically added comments to the disassembly.

Obfuscated Imports

Anyway, those Windows functions reveal quite a lot of information as they are well-
documented functions. Therefore one may want to hide its presence to hide what is going
on.

All these imports you may see in your disassembler are loaded from the Import Address
Table (IAT), which is referenced somewhere inside the PE headers of the executable. Some
malware/games try to hide these import addresses by not pointing to the DLL function
directly. Instead, a trampoline or detour function may be used.

Examining our Sample

For this example, we are looking at a sample that is using a trampoline-ish obfuscation, as
you can see below:

5/17

The address below, 0x7FF7D7F9B000 which references our function 0x19AA1040FE1 is
looking completely different. You may think this is junk code, but have a good look and you
will find out it's not.

Take a good look at the first two instructions, starting with mov rax, FFFF8000056C10A1
followed by jmp 19AA1040738 , except everything after that is complete junk. Anyway, let's
take that jump and see where it takes us to:

Look at that, 4 more valid instructions, this time it's an XOR and 2 ADDs followed by yet
another jump. Let's repeat this process a few more times...

6/17

Finally, we reached a jmp rax instruction! In case you didn't notice, all the XOR, SUB, and
ADD instructions have been performed on that Rax register, meaning that this may contain
the actual pointer of our imported function. Let's do the math and find out.

7/17

And indeed, after doing the math we obtain the pointer to ADVAPI32.RegOpenKeyExA ,
cheers!

Now, all we have to do is repeat this a few hundred times and we have completely
deobfuscated the IAT import tables.

Automated IAT Deobfuscation

I don't think any of you want to repeat this process by hand using the calculator, doing it once
was already a pain in the ass. From now on we will be using C# to automate the calculations
for us. As you may have seen we only faced ADD, SUB, and XOR operations that were done
on the same register. The reason for that is Rax is used as a return address whereas
registers such as Rcx, Rdx, R8, R9, and some others are not callee safe and may conflict

8/17

with the calling conventions. This means we won't even need a disassembler as we can
easily differentiate these instructions ourselves thanks to the minimal usage of registers and
opcodes.

I'm afraid I won't go into any more details as I explained the obfuscation technique in much
detail.

Control-Flow Obfuscation

Another valuable source of information while reversing a binary is the assembly instructions
themselves. For humans, they may be hard to understand, but for decompilers such as IDA,
we can simply press F5 and IDA will generate that oh-so-sweet pseudo-code that we
humans can understand.

One easy way to obfuscate the actual instructions is by using a combination of junk-code
together with opaque branching. What this means is that you put junk code right after a
branch instruction. The trick is that you use a conditional jump, however, you make sure that
the condition is always true so the branch is always taken. What the disassembler doesn't
know is that the conditional jump will always be true at runtime, making it believe both sides
of the conditional jump can be reached during runtime.

Okay if you're not quite following then let me show you some visuals to help you understand.
The first image shows jbe which lands inside another instruction.

NOTE: The red marked bytes are junk code.

9/17

Now take a deep look at the second image below, all I did here was NOP the two bytes of
the last instruction so that my IDA reveals the hidden instruction underneath the and
[rdx+24448B48h], bh instruction.

We may also patch the conditional jump with an unconditional one to make sure IDA won't
fall for it again.

Before we continue I would like to show one last example as the previous one was a very
basic one. Things become a lot more complicated when you start chaining these obfuscated
jumps into each other, as you can see in the image below.

10/17

This image only shows the chaos it creates in the control flow, but just imagine how hard my
CPU was suffering while IDA did its very best to create this graph based on junk instructions.

Now you may wonder what the deobfuscated functions look like? I'm glad you asked!

11/17

See that little blue arrow I drew on the left side? that shows what the right part is zoomed in
on. Now have a look at the right side and you will see seven deobfuscated jumps in just that
small part of the function. Just imagine how much time one would need to deobfuscate this
manually or semi-automated (IDA script to NOP jmp). Doing that one by hand using an IDA
script took me already 40 minutes... and that's just for one damn function. Imagine how many
other functions I would need to do to find what I was actually looking for!

Automated Control-Flow Deobfuscation

Okay, so now that we have a good understanding of how it works we just need to automate
it. As I mentioned before, I used an IDA Script before to just patch the unconditional jumps
and NOP slide the junk out.

However, this still took me 40 minutes to clean as the hardest part was to identify the opaque
branches. So how do we solve this? You may think we should examine every conditional
jump and check if it's opaque, then NOP slide and repeat? WRONG!

12/17

Let me tell you a secret, we don't give a shit about what's opaque or whatnot. All I really care
about is that my IDA can give me decompiled code when I hit F5, which indeed won't happen
as long as these obfuscated jumps force junk to collide into real assembly instructions.

But does that mean we need to figure out if a conditional jump is opaque or not? nope, all we
need to do is check if the jump collides inside an existing instruction and then patch out that
instruction as seen in our first example.

DeFlow Deobfuscation Algorithm

Now that we know how to solve the issue we can start diving into the algorithm I came up
with to deobfuscate all instances for this kind of obfuscation.

13/17

List<ulong> _alreadyDiscovered;

// Buffer is a copy of the .text section
function Deflow(byte[] buffer, ulong[] functions)
 for(int i = 0; i < functions.Length; i++)
 do
 int newDiscovered = 0;
 List<ulong> chunks = DeflowChunk(buffer, functions[i]);
 while(chunks.Count != 0)
 List<ulong> newChunks;
 foreach(var c in chunks)
 newChunks.AddRange(DeflowChunk(buffer, c));
 newDiscovered += chunks.Count;
 chunks = newChunks;
 while (newDiscovered != 0)

function DeflowChunk(address)
 List<ulong> newChunks;

 // 63th bit indicates if this address was extracted from a negative jump or not
 bool isNegative = address >> 63 == 1;
 address &= 1 << 63;

 // Check if already discovered
 if(_alreadyDiscovered.Contains(address))
 return newChunks;

 _alreadyDiscovered.Add(address);

 ulong lastBranch = 0; // Indicates our last conditional jump address
 ulong lastBranchSize = 0; // Size of the last conditional jump address
 ulong lastTarget = 0; // Target location of the last conditional jump
 int stepsLeft = 0; // Steps (bytes) left to reach lastTarget from current
address

 // Usage of SharpDisasm
 var disasm = new Disassembler(buffer, address - base); // NOTE: base = BaseAddress
+ .text offset

 foreach(var insn in disasm.Disassemble())
 ulong target = 0;
 ulong lastAddrStart
 bool isJmp = true;

 switch(insn.Mnemonic)
 // Stop analysing when we encounter a invalid or return instruction while we
have no lastTarget
 case ud_mnemonic_code.Invalid:
 case ud_mnemonic_code.Ret:
 if(lastTarget == 0)
 return newChunks; // Only accept when no lastTarget as we may be looking at
junk code
 break;
 case ud_mnemonic_code.ConditionalJump: // all conditional jumps

14/17

 if(lastTarget == 0)
 target = calcTargetJump(insn); // Helper to extract jump location from
instruction

 if(!isInRange(target)) // Helper to see if target address is located in our
Buffer
 isJmp = false;
 break;

 // Check if instruction is bigger then 2, if so it wont be obfuscated but
we
 // do want to analyse the target location
 if(insn.Length > 2)
 isJmp = false;
 newChunks.Add(target);
 break;
 else
 isJmp = false; // Do not this conditional jump accept while we already

 // have a target (might be looking at junk code)
 break;
 case ud_mnemonic_code.UnconditionalJump:
 case ud_mnemonic_code.Call:
 if(lastTarget == 0)
 ulong newAddress = calcTargetJump(insn); // Helper to extract jump location
from instruction

 if(!isInRange(newAddress))
 isJmp = false;
 break;

 // Add target and next instruction IF not JMP (CALL does return, JMP not)
 if(insn.Mnemonic == ud_mnemonic_code.Call)
 newChunks.Add(address + insn.PC);

 // Add instruction target for further analyses
 newChunks.Add(newAddress);
 return newChunks;
 break;

 // quick mafs
 ulong location = (address+insn.Offset);
 stepsLeft = (int)(lastTarget - location); // Only valid if we have a lastTarget!

 // Setup a new target if current instruction is conditional jump while there is
no lastTarget
 if(lastTarget == 0 && isJmp)
 lastBranch = loction;
 lastBranchSize = insn.Length;
 lastTarget = target;
 else if (stepsLeft <= 0 && lastTarget != 0)
 // if stepsLeft isn't zero then our lastTarget is located slighlt above us,
 // meaning that we are partly located inside the previous instruction and thus
we are hidden (obfuscated)
 if(stepsLeft != 0)

15/17

 int count = lastTarget = lastBranch; // calculate how much bytes we are in
the next instruction
 if(count > 0)
 // making sure we are a positive jump
 int bufferOffset = lastBranch - base; // subtract base from out address so
we can write to our local buffer

 // NOP slide everything except our own instruction
 if(int i = 0; i < count - lastBranchSize; i++)
 buffer[bufferOffset + lastBranchSize + i] = isNegative ? 0x90 : 0xCC; //
We use NOP for negative jumps
 //
and int3 for positive

 if(!isNegative)
 buffer[bufferOffset] = 0xEB; // Force unconditional Jump

 // add next instruction for analyses and exit current analysis
 newChunks.Add(lastTarget);
 return newChunks;
 else
 // we are a negative jump, set 63th bit to indicate negative jump
 lastTarget = |= 1 << 63;

 // add target to analyser and exit current analysis
 newChunks.Add(lastTarget);
 return newChunks;
 else
 // stepsLeft was zero, meaning there is no collision
 // add both target address and next instruction address so we can exit
current analysis
 newChunks.Add(lastBranch + lastBranchSize);
 newChunks.Add(lastTarget);
 return newChunks;

 return newChunks;

NOTE: this is pseudo-code, I am aware it doesn't run! (seriously)
Pretty big huh? little more difficult to understand than the IAT Import deobfuscation as we
used an actual disassembler library to get the size and mnemonic of each instruction. Using
the disassembler is almost a must as we also had to figure out if an instruction collided with
each other.

There are plenty of comments in the pseudo-code to give you a better understanding of how
things should work. You may now also take a look at the real (Deflow algorithm) used in the
Unsnowman repo.

DeFlow Algorithm Explained

The main function will keep track of already discovered chunks while it recursively invokes
DeflowChunk for the linear disassembly. Keeping track of newly discovered chunks is done

through lists and loops as it would trigger a StackOverflow due to the high amount of

16/17

branching instructions that can be done in a single block.

The DeflowChunk will first check if we encounter a given branching instruction and perform
one of the following actions if so

Ret - Stop if no lastTarget is set
Invalid - Stop if no lastTarget is set
ConditionalJump - Calculate target address and follow if in range of our buffer
UnconditionalJump - Calculate target address and save for further analysis if in

range of our buffer
Call - Calculate target address and save for further analysis if in range of our buffer

In case we don't have a lastTarget set we will check if the current instruction is a
ConditionalJump that jumps within the range of our buffer (isJmp flag) and set the
lastTarget to the destination of the ConditionalJump .

Once we have such lastTarget we take our current instruction pointer and subtract it by
lastTarget to calculate how many more bytes we need to disassemble (stepsLeft).

After calculating the stepsLeft we check if the value equals zero. If the value is above
zero we will continue the linear disassembly.

When the stepsLeft is below zero it means that the assembly has collided with the next
instruction. This most likely means that our last ConditionalJump that was responsible for
setting our lastTarget is an opaque condition, meaning our current chunk will most likely
never be executed and is instead used to overlap the next few legit assembly instructions.

We can fix this by patching the first byte of our ConditionalJump to 0xEB , making it an
UnconditionalJump . To clean things up a little more we also patch all bytes between the

last ConditionalJump and lastTarget .

This process is then repeated multiple times for every call or conditional jump it finds during
its linear disassembly process.

Conclusion

Not only malware but also legitimate software like video games tend to use these kinds of
obfuscation techniques to hide as much valuable information in the hope to prevent the
reversal of the software. However, as you have seen we have successfully deobfuscated
these two techniques and were able to reveal all hidden information.

Originally I was going to benchmark a popular video game where one instance is the original
binary and then benchmark again but with a deobfuscate binary - which should use fewer
resources due to removal of junk and opaque branching - to then see how much of a

17/17

performance impact these obfuscation techniques have. But due to my legal history, I
decided not to do so.

Anyway, we can still conclude that these obfuscation techniques do a very good job of
wasting my valuable time, which is a good way to prevent people from reversing software.
On top of that, the Deflow algorithm itself takes several minutes/hours (depending on the file
size) to deobfuscate the complete control flow of a binary.

With that being said I hope you learned something from my journey.
Oh and for those who didn't notice, or in case you scrolled all the way down to find a
download link... you can find the Unsnowman source code at my GitHub, cheers!
You can study the DeFlow pseudo-code instead ;)

Have something to say?

Contact me at admin@ferib.be

More Articles

https://github.com/ferib/Unsnowman
http://10.10.0.46/mailto:admin@ferib.be
https://ferib.dev/portfolio.php?t=Blog+post

