Analyzing Malware with Hooks, Stomps, and Return-
addresses

arashparsa.com/catching-a-malware-with-no-name/

Arash's Security Thoughts n Stuff March 12, 2022

Mar 12, 2022

Table of Contents

Introduction

This is the second post in my series on developing robust malware and their relevant
detection's. This post will focus on an interesting observation | made when creating my heap
encryption and how this could be leveraged to detect arbitrary shell-code as well as tools like
cobalt strike, how those detections could be bypassed and even newer detections can be
made.

EDITED: Forgot the POC! Here it is https://github.com/waldo-irc/MalMemDetect

The First Detection

If you recall in the first post, our method at targeting Cobalt Strikes heap allocations was to
hook the process space and manage all allocations made by essentially what was a module
with no name. Here is the code we had used as a refresher:

117

https://www.arashparsa.com/catching-a-malware-with-no-name/
https://github.com/waldo-irc/MalMemDetect

#include <intrin.h>
#pragma intrinsic(_ReturnAddress)

GlobalThreadId = GetCurrentThreadId(); We get the thread Id of our dropper!

HookedHeapAlloc (Argl, Arg2, Arg3) {

LPVOID pointerToEncrypt = O0ldHeapAlloc(Argl, Arg2, Arg3);

if (GlobalThreadId == GetCurrentThreadId()) { // If the calling ThreadId matches
our initial thread id then continue

HMODULE hModule;
char lpBaseName[256];

if (::GetModuleHandleEXA(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
(LPCSTR)_ReturnAddress(), &hModule) == 1) {

::GetModuleBaseNameA(GetCurrentProcess(), hModule, lpBaseName,
sizeof(lpBaseName));

}

std::string modName = lpBaseName;
std::transform(modName.begin(), modName.end(), modName.begin(),
[J(unsigned char c) { return std::tolower(c); });
if (modName.find("d1ll") == std::string::npos && modName.find("exe") ==
std::string::npos) {
// Insert pointerToEncrypt variable into a list

}

The magic lines lie here:

if (::GetModuleHandleExXA(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
(LPCSTR)_ReturnAddress(), &hModule) == 1) {

::GetModuleBaseNameA(GetCurrentProcess(), hModule, lpBaseName,
sizeof (1lpBaseName));

}

What we are trying to do here is take the current address our function will be returning to and
attempting to resolve it to a module name using the function GetModuleHandleExA with the
argument GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS. With this flag the
implication is the address we are passing is: "an address in the module"
(https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-
getmodulehandleexa). The module name will get returned and stored in the IpBaseName
variable.

With the case of our thread targeted heap encryption this function actually returns 0, as it
cannot resolve the return address to a module! This also means IpBaseName ends up
containing nothing.

217

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandleexa

As always, let's see what this looks like in our debugger. First, we'll start with a legitimate
call. I've gone ahead and hooked HeapAlloc using MinHook
(https://github.com/TsudaKageyu/minhook) and am tracing the return address of all callers.
Let's see who the first function to call our hooked malloc is:

t data = (LPCSTR)_ReturnAddress();

: _ ADDRESS, data, &hModule)
: :GetModuleBaseNameA(GetCurrentProcess(), hModule, lpBaseName, (1pBaseName)

F (threadMonitor == NULL) {
threadMonitor = callerld;

LogDetected(
fig 1. Usage of _ReturnAddress intrinsic
Here we can see within our code we use the Visual C++ _ReturnAddress() intrinsic
(https://docs.microsoft.com/en-us/cppl/intrinsics/returnaddress?view=msvc-160) and store the
value in a variable named "data". We then pass this variable to GetModuleHandleEXA in
order to resolve the module name we will be returning to.

Mame
b

Return address value

Taking a look at data we can see it seems to have stored a valid address. Now let's look at
this address in our disassembler.

fig 3. Return address location
As you can see we are right at that "mov rbx,rax" instruction at the end of the screenshot
based on the address. That means when our hooked function completes this is where it will
return, and we can further validate this as the correct assembly instruction we will return to
as right before this is a call to RtlAllocateHeap, our hooked function! Using this we now

3/17

https://github.com/TsudaKageyu/minhook
https://docs.microsoft.com/en-us/cpp/intrinsics/returnaddress?view=msvc-160

know we are in the function LdrpGetNewTIsVector, that our hooked RtlAllocateHeap was just
ran, and on completion it'll continue within LdrpGetNewTlIsVector right after the call as usual.
If we attempt to identify what module this function comes from we can clearly see it is from
ntdll.dll.

Mame
b @ data iii 363 "He@H.. ADC% e 3HH 1030 8% 5"

b @ |pBaseMame 00 eff "ntdll.dll"

address module resolved

This works because the function maps to a DLL we appear to have loaded from disk.
Because of this, Windows knows how to identify what module the function comes from.
What about our shellcode though? Let's see what that looks like.

Watch 1
Search Depth: 3

Marme Value
b @ data

b & |pBaseMame

return address and failed resolution
So our base name is empty because the function fails to resolve the address to a module.
Lets see what that address looks like in the disassembler:

4/17

Address: 0153bec3e3d’]

wving Options

o

fig 6. Shellcode return address location
There's our address at "test rax,rax". We actually know this is our shell-code based on the
address:

5/17

B LockdExe.exe (5252) (0 15bec3c0000 - Cxl5becd0d000) — O et

00o0aaaoo Ed Sa 41 52 55 43 89 &5 48 81 ec 20 00 00 00 45 MZARUH..H.. ...H ~
00000010 3d 1d ea ££ £f £f 48 85 df 43 81 c3 38 5L 01 00 He.Hawu .o
00000020 ££ 43 41 k8 £0 b5 a2 56 &5 04 00 OO0 00 5& 48 &85 ..A....Vh....ZH.
00000030 £5 ££ 40 00 00 00 00 00 00 00 00 00 £0 00 00 00 seeevennnennnnns
00000040 02 1f ba Os 00 k4 09 cd 21 B2 01 4c cd 21 54 68 ..ee.... I'..L.!Th
00000050 &% 73 20 70 72 ef &7 72 61 €d 20 €3 &1 €= €e &€f is program canno
00000080 74 20 62 €5 20 72 73 g 20 €9 ge 20 44 4f 53 20 t be run in DOS
00000070 6d 6f 64 €5 2e 0d 04 Oa 24 00 00 OO0 00 00 00 00 mode....%ceeeua.
00000030 26 86 01 74 62 7 ef 27 62 e7 6f 27 62 €7 6f 27 g..th.o'b.o"b.o’
00000050 04 09 bd 27 fa 7 ef 27 fc 47 ad 27 &3 €7 ef 27 ..."..0".G."c.of
000000a0 93 21 a0 27 4k =7 &f 27 %3 21 al 27 ea <7 &f 27 ! 'K.o'. ..o
0000000 93 21 a2 27 &8 <7 ef 27 ek 8f £c 27 &% 7 ef 27 .!."h.o'k.."1.0’
0000000 &2 &7 62 27 ad =7 ef 27 04 0% al 27 51 &7 ef 27 b.n'..o'..."Q.o"
00000040 04 0% a5 27 &3 7 ef 27 04 0% a3 27 &3 7 ef 27 ..."c.o'..."c.o! ﬁg 7.
0000000 52 69 63 €8 62 <7 ef 27 00 00 00 OO 00 00 00 00 Richkr.o'.eeew....
000000£0 50 45 00 00 64 86 05 00 £7 b2 a0 5 00 00 OO0 00 PE..d...... ‘o
00000100 00 00 00 00 £0 00 22 a0 0k 02 Ok 00 00 a3 02 00 M naaaaaas
00000L10 00 £2 0L 00 00 00 00 00 34 bd OL OO0 00 10 00 00 ..eesaas donnsann
00000120 00 00 00 20 01 00 00 00 00 10 00 00 00 02 00 00 seeeeenennnnnnns
00000130 05 00 02 00 00 00 00 00 05 00 02 00 00 00 00 00 seeevenencnnnnns
00000140 00 40 04 00 00 04 OO0 OO0 00 00 00 00 02 00 &0 0l ceweennnnnnnan .
00000150 00 00 10 00 00 00 00 00 00 10 00 00 00 00 00 00 seeevenennnnnnns
00000180 00 00 10 OO0 00 00 00 00 00 10 00 00 00 00 00 00 seeevenennnnnnns
00000170 00 00 00 OO0 10 00 00 00 20 b3 03 00 52 00 00 00 .ceeee... R
000001580 04 a4 03 00 &4 00 00 00 OO0 00 00 OO0 00 00 00 00 ..eedessncannnns
00000Ls0 00 20 04 00 34 20 00 00 00 00 00 00 00 00 00 00 ..aed seseansans
000001ad 00 cO 04 OO 00 06 00 00 OO0 00 00 00 00 00 00 00 seeevnnennannnns

AAAAATLA AR AR AR AN AR Rn nn nn AR Al Al Rin Rl nh nn nn

Reread Write Go to... 16 bytes per row o Save...

Shellcode in process hacker

0x15bec3c0000 Private: Commit 08k8 Rwx fig 8.

Shellcode region in process hacker ’

Within process hacker we can see our MZ header and that the location we are returning to is
within the address space of our shellcode. We can also see unlike other modules like
ntdll.dll, in ProcessHacker the "use" column is empty for our shellcode:

Base address Type Size Protect.. Use
Ox7ffe4000 Private: Commit 4k R
0x15bebdc0000 Private: Commit 3kB RW
0x15bebdf000 Private: Commit 4kB RX
0x15bebfd0000 Private: Commit 12kB RW
0x15bec310000 Private: Commit 4kB RW

0x15bec3c0000 Private: Commit 308kB RWX

fié 9. Use section for shellcode is empty

6/17

Base address

0x7fffb8d33000
0x 7fffbBdae000
0x7fffbBdsf00
0x7fffbed70000
0x7fffb8d 72000
0x7fffb8d 73000
0x 7fffbBedoo0n
0x7fffbBed 1000
0x7fffbef50000
0x7fffb8fa3000
0x7fffbafa5000
Ox7fffb8fd0000
0x7fffbBfd 1000
0x7fffb20ec000
0x7ffb9134000
0x7fffb9 135000
0x7fffb9137000
0x7fffb9140000

Type

Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:
Image:

<

Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Cormmit
Commit
Commit
Commit
Commit
Cormmit
Commit
Commit
Commit
Cormmit

Size
216 kB
4kB
4kB
akB
4kB
36 kB
4kB
508 kB
204kB
kB
36 kB
4kB
1,132kB
283 kB
4kB
aks
kB
532kB

Protect...

R
RW
WC
RW
WC
R

R
RX
R
R
R

R
RX
R
RW
WC
RW
R

Lse
C:\Windows\System32\advapis2.dll
C:\Windows\System32\advapiz2.dll
C:\Windows\System32\advapi32.dll
C:\Windows\System32\advapi32.dll
C:\Windows\System32\advapis2.dll
C:\Windows\System32%advapi32.dil
C:\Windows\system32Wkernel32.dll
Ci\Windows\System32Wkernel32.dll
C:\Windows\System32Wkernel32.dll
C:\Windows\System32Wkernel32.dll
C:\Windows\System32%ernel32.dll
C:\Windows\System32\ntdll. dil
C:\Windows\System32\ntdll. dil
C:\Windows\System32intdll. dll
C:\Windows\System32ntdll. dil
C:\Windows\System32\ntdll. dil
C:\Windows\System32\ntdll. dil
C:\Windows\System32intdll. dll

fig 10. Use section for DLL's is filled
This is because our arbitrarily allocated memory does not map to anything on disk. Because
of this, when we attempt to resolve the return address to a module we get nothing returned

as a result.

That being said, we can see instances of RWX memory that don't map to disk in processes
that use JIT compilers such as C# and browser processes as well. You can see in stage 3 of

the Managed Execution Process (https://docs.microsoft.com/en-

us/dotnet/standard/managed-execution-process) that an additional compiler takes the C#

code a user creates and turns it into native code (which means our C# IL now becomes
native assembly). For this process to take place a RWX region needs to be allocated for it to
be able to write the new code and also be able to execute it. We can see these RWX
regions in C# processes with ProcessHacker.

717

https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process

[85] Microsoft.ServiceHub. Controller.exe (5336) Properties — O P
General Statistics Performance Threads Token Modules Memory Environment Handles .NET assemblies .MET performance GPU Comment
Hide free regions Strings. .. Refresh
~

Base address Type Size Protect.. Use ~

Ox7ff420100000 Private: Commit 4kB RWX

0x7ff4=20110000 Private: Commit 4kB RWX

0x7ff420120000 Private: Commit 4kB RWX

0x7ff5e22d0000 Private: Commit 4kB RW

0x7ffa51100000 Private: Commit 12kE RW

0x7ffa51103000 Private: Commit 4kB RWX

0x7ffa51104000 Private: Commit IBKE RW

0x7ffa5110d000 Private: Commit 12kB RWX

0x7ffa51110000 Private: Commit 48kB RW

0x7ffa5111d000 Private: Commit 12kB RWX

0x7ffa51120000 Private: Commit 4kB RW

0x7ffa51124000 Private: Commit kB RW

0x7ffa5112b000 Private: Commit BB RWX

0x7ffa5115c000 Private: Commit S6 KB RWX

0x7ffa511b0000 Private: Commit 4kB RW

0x7ffa511ba000 Private: Commit 4kE RW

0x7ffa511bc000 Private: Commit 4kB RWX

0x7ffa511c0000 Private: Commit 4kB RWX

0x7ffa511=6000 Private: Commit 12kB RWX

Ox7ffa51220000 Private: Commit 200kE RWX

0x7ffa512a0000 Private: Commit 64kB RW

0x7ffa512b0000 Private: Commit 32KE RWX

0x7ffa512c0000 Private: Commit 64kB RW

0x7ffa512d0000 Private: Commit 44kB RW

0x7ffa5120000 Private: Commit 249kB RWX

0x7ffas12f0000 Private: Commit 4kB RWX

0x7ffa51300000 Private: Commit 64kB RW

0x7ffa51310000 Private: Commit 64kB RW

0x7ffa51320000 Private: Commit 64kB RW

Ox7ffa51330000 Private: Commit 64kB RW

0x7ffa51340000 Private: Commit 64kB RW

0x7ffa51350000 Private: Commit 3BkE RWX

0x7ffa51360000 Private: Commit 64kB RW

0x7ffa51370000 Private: Commit 64kB RW

0x7ffa51330000 Private: Commit 64kB RW

0x 7251390000 Privata: Crmmit RALR AW e

M7= 513a000n g ®
Cloge

fig 11. JIIT Compiler RWX sections

Above you can see a small sample of these RWX sections within my
Microsoft.ServiceHug.Controller.exe process. This means in theory we could see false
positives from JIT compiler based languages that run any of our hooked functions from these
memory regions. Additionally, this means these sorts of processes can also be great spaces
to hide your RWX malware, as Private Commit RWX regions are otherwise considered
suspicious (as we have executable memory that doesn't map to anything on disk).

Outside of blending in with JIT processes though, let's discuss another simple bypass to this,
one that exists within Cobalt Strikes own C2 profile even.

The Module Stomp Bypass

If we think back to the original detection, we were able to observe exectuable memory calling
our hooked functions that couldn't resolve to any module name. A first thought may be "what
is @ mechanism to bypass this" as one must exist. Several exist in fact, but we can start with
a simple one, a mechanism called "Module Stomping" (https://www.forrest-

8/17

https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing

orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing as well as
https://www.ired.team/offensive-security/code-injection-process-injection/modulestomping-dIl-
hollowing-shellcode-injection).

What this technique effectively does is load a DLL that our process doesn't currently have
loaded and hollow out its memory regions to instead contain the data for a malicious DLL of
ours instead. This would make it so all our calls now appear to be coming from this
legitimate module!

The section in your malleable C2 profile (for Cobalt Strike) that you would have to edit is the
following:

set allocator "VirtualAlloc"; # HeapAlloc,MapViewOfFile, and VirtualAlloc.

Ask the x86 ReflectivelLoader to load the specified library and overwrite
1its space instead of allocating memory with VirtualAlloc.

Only works with VirtualAlloc

set module_x86 "xpsservices.dll";

set module_x64 "xpsservices.dll";

These settings can be observed in the old reference profile here:
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/reference.profile. By
changing your allocator to "VirtualAlloc" and enabling the set module x86 and x64 settings
you can now allocate your Cobalt Strike payload to arbitrary modules you load instead of
arbitrarily allocated exectuable memory space.

Let's change the setting and see what this looks like. We will simply run an unstaged Cobalt
Strike EXE and observe for this experiment.

9/17

https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-hollowing
https://www.ired.team/offensive-security/code-injection-process-injection/modulestomping-dll-hollowing-shellcode-injection
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/reference.profile

fig 12. Cobalt Strike module stomp

Let's go ahead and run this with our module name resolver and see what it looks like. Since

[file (1).exe : - O
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
Hide free regions Strings... Refresh
~
Base address Type Size Protect... Use K
O 75 ffdooo Mapped: Commit 140kE R
70000 Mapped: Commit a04kE R C:YWindows\System32Yocale. nls
O 110000 Mapped: Commit 12kB R C:\Windows\System32\en-US \mswsodk. dll.mui
0x1100000 Mapped: Commit 3,296kE R Ci\windows\Globalization \Sorting\SortDefault.nls
010000 Mapped: Commit 54kB RW Heap (ID 2)
03184000 Mapped: Reserved 16 kB
1642000 Mapped: Reserved 1,992kB
0x1a38000 Mapped: Reserved 20,088 kB
0x7ff4fdeg5000 Mapped: Reserved 1,004 kB
0400000 Image: Commit 4kE R C:YUsersirashDownloadsfile (1).exe
401000 Image: Commit 12kE RX C:\sersiArashDownloadsfile (1).exe
404000 Image: Commit 264kB WC C:\Users\Arash'Downloads\file (1).exe
Ox446000 Image: Commit 4kB RW Ci\Users\Arash'Downloads\file (1).exe
0447000 Image: Commit 12kB R Ci\Wzersharash'Downloads\file (1).exe
03445000 Image: Commit ki RW C:YsersiarashDownloadsfile (1).exe
Ox44c000 Image: Commit kB WC C:\UsersVArashDownloadsfile (1).exe
Ox7ffaac260000 Image: Commit 4kB R C:\Windows\System32\xpsservices.dll
0x7ffaac26 1000 Image: Commit kB RX Ciwindows\System32\xpsservices. dll
Ox7ffaass63000 Image: Commit 308kB RWX C:\Windows\System32\xpsservices. dll
Ox7ffaadsbo0a0 Image: Commit 1,628k RX C:\Windows\System32\xpsservices. dll
Ox7ffaacb47000 Image: Commit 728kB R C:\Windows\System32\xpsservices.dll
0x7ffaacbfdooo 1 Cammit AlR_Dusl CilllindauelCuntam 201 vices,dll
0x7ffaacbfe0on B file (1).exe (356) (0xTffaab363000 - OxTffaaB9b0000) - O ¥ rvices.dl
0x7ffaa6e00000 vices.dll
0x7ffae 2000000 00000000 :1 S5a 41 52 55 4% 89 e5 48 81 ec 20 00 00 00 4% MZRARUH..H.. ...H ~ mandConnRouteHelper.dil
Ox7ffae 2001000 00000010 &8d 1d ea ££ ££ £ 48 89 df 48 81 c3 &8 nandConnRouteHelper.dl
0x7ffae200c000 00000020 ££ d3 41 S £0 b5 a2 56 €5 04 00 00 00 mandConnRouteHelper.di
00000030 £9 ££ 40 00 00 00 00 OO0 00 00 Q0 00 £0
Dic7ffae20 12000 00000040 75 70 73 73 €5 T2 76 €9 €3 €5 73 2= 64 pandConnRouteHelper.dl
Duc7ffae20 13000 00000050 a3 b bE Sa bd o ab da 2= 62 2% 59 23 pandConnRouteHelper.dl
0x7ffae6a20000 00000060 3¢ 67 2% 0d =7 94 70 ca 60 78 dc Ob 80 . t.dl
0x7ffae6a21000 00000070 2d 52 cc &5 c0 ab 8b 83 ad 43 70 45 5b 24 15 d2 -........ CpE[t.dl
Ox7ffae6c0a000 00000030 26 86 01 74 €2 =7 6L 27 €2 e7 6f 27 €2 27 &f 27 &..tk.o'k.o'b.o’ t.dll
Ox7ffaeceafloo 000000590 04 0% kd 27 £a =7 &£ 27 fc 47 af 27 €3 =7 &f 27 'e.0'.G."Cu0" it dll
0x7ffae6eh4000 000000a0 93 21 a0 27 4b &7 &£ 27 93 21 al 27 ea =7 &f 27 .!.'K.o'.!."..0" t.dll
oo | MO0 B 2T @GN RGO LT Uhek i
uuuuuuct o el oe i oa el o 7L Uz a ! 2/ ol ! N o P o
Ox7ffae72h1000 00000040 04 08 a5 27 63 =7 &£ 27 04 09 a3 27 €3 =7 &f 27 ...'c.o’ ';. o' B > N
R 00000020 52 69 €3 65 €2 &7 6 27 00 00 00 00 00 00 00 00 Richb.o'........
000000£0 50 45 00 00 &4 86 05 00 £7 b2 a0 5£ 00 00 00 00 PE..duev.a.. _
00000100 00 00 OO0 00 £0 00 22 &0 Ob 02 Ok 00 00 &% 02 00 Close
00000110 00 £2 01 00 OO0 00 00 00 34 k4 0L 00 00 10 00 00 weweuwnn deninnnn

the name should always resolve now we will change the logic a bit to monitor only

xpsservices.dll.

10/17

! data = (LPCSTR)_ReturnAddres
etModuleHandleExA(GET MODULE HANDLE EX FLAG_FRO
s(), hModule, lpBaseName, (lpBaseName))

ADDRESS, data, &hModule) ==

se {
if (threadMonitor == NULL) {
threadMonitor = callerld;

m thr ith id:
ogDetected(&log);

printf("Found Module Caller!\n");

g modName = lpBaseName;

std: :transform(modName.begin(), modName.end(), modName.begin(),
[1(c) { return tolower(

if (modMame.finc
printf("Four

Locals Call Stack Breakpoints ntion w Immediate Wi

Watch 1 =

Mame

¢ @ |pBaseMame

resolved properly

Here we can see the new stomped DLL calling our hooked malloc, and that our code can
successfully resolve calls to this module. If we look at the print statements we would also
see all the calls from anything that dont't map to modules have dissapeared.

11/17

Found CS Caller Module!
Found CS Caller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found CS Caller Module!
Found CS Caller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found CS Caller Module!
Found CS Caller Module!
Found aller Module! ig 15. Only module callers
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found CS Caller Module!
Found CS Caller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found aller Module!
Found er Module!
Found CS * Module!

And finally we can see in the above screenshot that no callers without module names are
observed anymore as all of Cobalt Strike's calls now map to a module on disk, a simple
bypass. So now we ask if this technique can be detected as well, and of course, there's a
few ways.

The Module Stomp Detection

There are several detections but we will delve into 2 here for module stomping. One is due
to a side effect of how Cobalt Strike implements module stomping as well as general I0Cs
that can be observed when module stomping is performed.

The first is a detection created by Slaeryan (https://github.com/slaeryan/DetectCobaltStomp).

In short, this detection works becasue a side effect of Cobalt Strike's implementation is that

when loaded in memory, the region appears to be marked as a EXE internally and not a DLL.

For those that don't have cobalt strike, he also created a tool to mimic the implementation
for people to play with and observe the detection. | won't go into this one too much as he
already has a POC and discusses this detection.

12/17

https://github.com/slaeryan/DetectCobaltStomp

The other detection is a much more basic one. Within any executable file, the section where
executable code lives is the .TEXT section. If we walk the .TEXT section of a DLL on disk
and compare it to the .TEXT section of its equivalent offload in memory the sections in theory
should always match, as the code should not change unless the file is polymorphic. The
code for this is fairly basic.

HMODULE 1phModule[1024];

DWORD lpcbNeeded;

// Get a handle to the process.

HANDLE = hProcess = OpenProcess(PROCESS_QUERY_INFORMATION |
PROCESS_VM_READ,
FALSE, processID);

// Get a list of all the modules in this process.
if (EnumProcessModules(hProcess, lphModule, sizeof(lphModule), &lpcbNeeded))

{
for (i = 0; 1 < (lpcbNeeded / sizeof (HMODULE)); i++)

{
char szModName[MAX_PATH];
// Get the full path to the module's file.
if (K32GetModuleFileNameEXA(hProcess, lphModule[i], szModName,
sizeof (szModName) / sizeof(char)))
{
// Do stuff
}
}

Here we simply start by iterating every module in the process.

13/17

// Get file Bytes

FILE* pFile;

long 1Size;

//SIZE_T 1Size;

BYTE* buffer;

size_t result;

pFile = fopen(szModName, "rb");

// obtain file size:

fseek(pFile, 0, SEEK_END);

1Size = ftell(pFile);

rewind(pFile);

// allocate memory to contain the whole file:
buffer = (BYTE*)malloc(sizeof(BYTE) * 1Size);
// copy the file into the buffer:

result = fread(buffer, 1, 1Size, pFile);
fclose(pFile);

BYTE* buff;
buff = (BYTE*)malloc(sizeof (BYTE) * 1Size);
_ReadProcessMemory(hProcess, lphModule[i], buff, 1Size, NULL);

PIMAGE_NT_HEADERS64 NtHeader = ImageNtHeader (buff);
PIMAGE_SECTION_HEADER Section = IMAGE_FIRST_SECTION(NtHeader);
WORD NumSections = NtHeader->FileHeader.NumberOfSections;

for (WORD i = ©; 1 < NumSections; i++)

{
std::string secName(reinterpret_cast(Section->Name), 5);
if (secName.find(".text") != std::string::npos) {
break;
}
Section++;
}

We then load the relevant module file on disk and store the bytes for comparing memory in
the var buffer. We then also read from the base address of the module located in
"IphModuleli]" and store all the bytes within the var buff. We then enumerate all the sections
in the loaded module until we find the .TEXT section and break the loop. At this point the
"Section" variable will contain all our relevant section data.

To be able to match the on disk file to the one in memory we need to use the Section offsets
to find the .TEXT section location on disk and in memory. This actually will not match
(usually). The offset to the .TEXT section in memory generally gets relocated down a page,
4096 bytes. The offset to the section on disk is usually 1024 bytes in comparison. But we
say usually so we of course will simply use "Section->PointerToRawData" to get the offset on
disk and "Section->VirtualAddress" to get its offloaded address in memory to be 100% sure.

LPBYTE txtSectionFile = buffer + Section->PointerToRawData;
LPBYTE txtSectionMem = buff + Section->VirtualAddress;

14/17

At this point all you'd have to do is compare each memory region byte for byte and make
sure they match.

int inconsistencies = 0;
for (int i = 0; i < Section->SizeOfRawData; i++) {
if ((char*)txtSectionFile[i] != (char*)txtSectionMem[i]) {
inconsistencies++;

}

Now of course we need to account for things like hooks and such, as we know many AV and
EDR will perform hooks we know these will provide false positives. As a result we take the
amount of the differences and if it's greater than a certain number only do we get concerned.

if (inconsistencies > 10000) {

printf("FOUND DLL HOLLOW.\NNOW MONITORING: %s with %f changes
found. %f%% Overall\n\n", szModName, inconsistencies, icPercent);

CHAR* log = (CHAR*)malloc(256);

snprintf(log, 255, "FOUND DLL HOLLOW.\nNOW MONITORING: %s with %f
changes found. %f%% Overall\n\n", szModName, inconsistencies, icPercent);

LogDetected(&log);

free(log);

std::string moduleName(szModName, sizeof(szModName) /
sizeof(char));

std::transform(moduleName.begin(), moduleName.end(),
moduleName.begin(),

[J(unsigned char c) { return tolower(c); });
dlIMonitor = moduleName;
break;

We arbitrarily pick 10000 as our amount simply because we know it'll certainly be a larger
number than any number of hooks any utility would alter for the hooks as well as being small
enough we know most raw malware payloads at least are much bigger. This should reduce
false positives substantially while finding any altered DLLs in memory. The only caveat to
this would be additional false positives from polymorphic DLLs who alter themselves in
memory.

Let's run our new detector against our Cobalt Strike payload and the hollowed DLL and
observe the results.

15/17

LockdExe.exe (BBBO7FF6

00@)

dll.d1ll Bytes Altered: 10.000800

ininet.dll tered: 18.0808080

0807 FFAFEAECOEE
FFAFEE48080)

11 (eeea7FFAFC160088)
11 (eeea7FFAF1410060

Found more an E d, th <5 re: ndo dll Bytes Altered:
FOUND DLL HOLLO
NOW MOMITORING i ndows' y .d with 3 [E rall

fig 16. DLL Hollow Detection

Here we can see a few false positives from our own hooks actually, where we alter 5 bytes to
the prologue of each function, 2 functions being altered in each DLL. Finally at the end we
can see our hollowed xpsservices.dll and the detection is observed with over 300k bytes
altered.

Let's go ahead and turn our tool into a DLL and inject it into everything to observe false
positives:

Injecting into everything and logging all data to files we can observe our detection:

16/17

FOUND DLL HOLLOW.

Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious
Suspicious

fig 17. Detection

Malloc() from module with name:
InternetConnectA() from module
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
InternetConnectA() from module
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
InternetConnectA() from module
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
InternetConnectA() from module
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
InternetConnectA() from module
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
InternetConnectA() from module
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
Malloc() from module with name:
InternetConnectA() from module
Malloc() from module with name:
Malloc() from module with name:

c:\windows\system32\xpsservices.dll LPVOID:
with name: c:\windows\system32\xpsservices.
c:\windows\system32\xpsservices.dll LPVOID:
¢:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
¢:\windows\system32\xpsservices.dll LPVOID:
with name: c:\windows\system32\xpsservices.
¢t \windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
¢t \windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
with name: c:\windows\system32\xpsservices.
c:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
with name: c:\windows\system32\xpsservices.
c:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
ci\windows\system32\xpsservices.dll LPVOID:
with name: c:\windows\system32\xpsservices.
ci\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
with name: c:\windows\system32\xpsservices.
c:\windows\system32\xpsservices.dll LPVOID:
¢:\windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:
¢:\windows\system32\xpsservices.dll LPVOID:
.d11, Name: 192.168.1.182 Creds: (null)[(null)]

with name: c:\windows\system32\xpsservices

¢t \windows\system32\xpsservices.dll LPVOID:
c:\windows\system32\xpsservices.dll LPVOID:

Found more than 5 bytes altered, there's potentially hooks here: C:\Windows\SYSTEM32\xpsservices.dll Bytes Altered: 303562.000000

NOW MONITORING: C:\Windows\SYSTEM32\xpsservices.dll with 303562.000000 changes found. 15.265849% Overall

0000000000842960 Heap Handle:000000OOBB760000
dll, Name: 192.168.1.182 Creds: (null)[(null)]
00000000e07C3300 Heap Handle:0000O0ORBR760000Q
000D0VRR2FEGVS® Heap Handle:2000000000760000
000000ERBA786760 Heap Handle:000POORBBT760000
000000000P342960@ Heap Handle:2000000000760000
d11, Name: 192.168.1.182 Creds: (null)[(null)]
000P00ORER7C2F20 Heap Handle:0000000000760000
00P00NEBB2FEGBSE Heap Handle:000POVORBBT760000
000D0VORRP7B66E® Heap Handle:0000000000760000
0000000BBO8A2660 Heap Handle:000OOOORBBT760000
d1l, Name: 192.168.1.182 Creds: (null)[(null)]
0000000BBA7C3420 Heap Handle:000OOOOORRT760000
00000000B2FEOBS0 Heap Handle:0000000000760000
000000ORBO736820 Heap Handle:00OOOROORRT760000
0000000000842020 Heap Handle:0000000000760000
d11l, Name: 192.168.1.182 Creds: (null)[(null)]
00000000007C31A0 Heap Handle:0000000000760000
00000VYR2FECRSG Heap Handle:000000000Q760000
00000000BO7866EQ Heap Handle:0000000000760000
0000000PAS420A8 Heap Handle:@0000000BQ760000
d11, Name: 192.168.1.182 Creds: (null)[(null)]
000000RRRA7C33A8 Heap Handle:20000000BQ760000
0000000RB2FEOE80 Heap Handle:000O00VOBB760000
00000VRRRR7366ER Heap Handle:0000000000760000
0000000000842020 Heap Handle:0000000OBB760000
dll, Name: 192.168.1.182 Creds: (null)[(null)]
00000000007C3140 Heap Handle:0000000QBR760000
000V0VRR2FECVSE Heap Handle:00000000BQ760000
000000ERBA786810 Heap Handle:000POVORBBT760000
000000000P342660 Heap Handle:@000000000760000

00000000007C35C0 Heap Handle:0000000000760000
00P00NEBB2FEGBSE Heap Handle:000POVORBBT760000

BUT! Interestingly enough we do observe 1 false positive on what appears to be a

polymorphic DLL after all...

Size:

Size:
Size:
Size:
Size:

Size:
Size:
Size:
Size:

Size:
Size:
Size:
Size:

Size:
Size:
Size:
Size:

Size:
Size:
Size:
Size:

Size:
Size:
Size:
Size:

Size:
Size:

a1

24
27648

41

24
27648

a1

24
27648

41

24
27648

21

24
27648

a1

24
27648

41

24
27648

Found more than 5 bytes altered, there's potentially hooks here: C:\Program Files\VMware\VMware Tools\intl.dll Bytes Altered: 7064.000000)

fig 18. False positive

Unfortunately not enough bytes are altered to be useful for a hollow target though!

How do you bypass this detection? Now the simple obvious solution is to restore the DLL

bytes (per https://twitter.com/solomonsklash's idea) on sleep to prevent this sort of detection
and next steps would be hooking those calls and detecting the restores if possible or the
constant file reads etc. As we all know Cyber Security is a never ending cat and mouse.

Final Thoughts

As red teamers work on malware often we make discoveries that can lead to new detections

too. These observations can be tremendously useful to the community while also pushing
researchers to the cutting edge and forcing them to think outside of the box if they'd like this

game to continue longer.

As we see above we find detections, make bypasses, find more detections, and the game
will never end. Hopefully some interesting new insights could be made to make our
defensive industry far more robust overall as we work together towards a goal of secure

internet usage.

https://twitter.com/solomonsklash

