
1/14

March 11, 2022

Part 2: LockBit 2.0 ransomware bugs and database
recovery attempts

techcommunity.microsoft.com/t5/security-compliance-and-identity/part-2-lockbit-2-0-ransomware-bugs-and-database-
recovery/ba-p/3254421

In Part 1 of this series (which you can find here), we provided background about our analysis
of the LockBit 2.0 ransomware and described our suspicions that "faulty crypto" was at play.
In this post, we will outline the issues that the decryptor poses and how we simply cannot
trust it and must remove it from any equation we intend on using to successfully decrypt
these database files.

Disclaimer: The technical information contained in this article is provided for general
informational and educational purposes only and is not a substitute for professional advice.
Accordingly, before taking any action based upon such information, we encourage you to
consult with the appropriate professionals. We do not provide any kind of guarantee of a
certain outcome or result based on the information provided. Therefore, the use or reliance
of any information contained in this article is solely at your own risk.

If only it were so easy…

Our earlier Procmon observations identified the encryptor randomly encrypting 65k bytes
after it was only supposed to encrypt the first 4k. So, while we do successfully decrypt the
intended encrypted region of the encrypted file, which is the first 0x1000 bytes, we fail to
identify and decrypt the unintended regions which are splattered throughout the now-
decrypted file due to the bug we’ve outlined in the encryptor.

https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-2-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254421
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-1-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254354
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-1-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254354

2/14

And as this is a customer-provided file, we don’t have the luxury of a Procmon or TTD trace
to quickly identify the corruption. To tackle this problem, we instead crafted an algorithm that
will be outlined shortly, that can scan the encrypted file and identify all regions of unintended
encryption.

Figure 12. Example of our first

implementation of the algorithm that identifies regions of unintended encryption

3/14

Figure 13. Valid data and corrupted data

In case it’s not clear by now, patience, the willingness to remain calm and wait, seems to be
a virtue that is prioritized in blocking I/O. Due to the LockBit 2.0 developers not giving this
virtue its due diligence, it gets worse for us in the regard that the decryptor itself suffers from
the exact same bugs as the encryptor. It fails to handle STATUS_PENDING states; it falsely
assumes all NTSTATUS errors/non-successes values are signed. To put it much more
succinctly, we cannot trust the decryptor.

4/14

Figure 14. Part of the decryptor code that illustrates the trust issues that we have with it

Because of suffering from the identical misconceptions as the encryptor, when decrypting the
database file that ended up having the appearance of being correctly decrypted, it in actuality
further corrupted the file trying to decrypt regions that were never encrypted to begin with!

These random regions further complicate the situation for us and now force us to deal with
them. Or do they? Fixing the encrypted unintended regions that were a result of the
encryptor is a logical step; fixing the newly encrypted regions from software that is solely
responsible for decrypting is not. So, to make our lives easier we took the logical high road
and decided to make our own decryptor.

5/14

Encryption overspill and rebuilding database files

Before outlining our decryptor and the details of the algorithm alluded to earlier, we must
point out yet another subtlety that must be addressed. Due to the unpredictable behavior the
encryptor is capable of we are facing further issues, outside of the encryption procedure
itself, of potentially irrecoverable corruption. The best way to see this is to have some
semblance of the underlying structures involved for a .ndf file, which is the format of the
database files that we had to work with. The understanding of this structure, at least the
essential parts relevant to us, serves as the basis for our recovery algorithm.

For our purposes, it suffices to understand that for every 0x2000 bytes, we have what are
called pages. Each page begins with a header that is 0x60 bytes in size. Pages can also be
classified as empty; 0x2000 bytes full of 0’s.

The header contains valuable metadata that we can leverage to identify areas of corruption.
Upon careful examination and side-by-side comparison of all the .ndf files that we had to
work with, we were able to uncover three relevant properties in the header that would serve
as the cornerstone of our recovery algorithm.

6/14

Figure 15. Illustration of all three properties as shown in a hex editor

The PageType field identifies the type of that individual page, which from our understanding
can either be a 1 (an occupied page) or a 0 (unoccupied/empty page). The PageIndex
property identifies the current page and its location within the database file.

So, ”Page 0” would be at “index 0”; “Page 1” would be at “index 1”, and so on. It is a way to
get to individual pages inside the .ndf file. And speaking of the database file itself, what
follows the PageIndex is yet another unique value that serves to identify the entire .ndf file as
a whole. In the above case this is indicated by the value “4”, but other database files had “3”
as a value here instead. What we care about, which is being able to identify the integrity of
each individual page that we come across, is that this is a value that we know must be
constant throughout each page for each database file we are processing.

From having a sufficient understanding of the page header, we can construct an algorithm to
verify the integrity of each individual page, which in turn allows us to also identify any
potential corruption to any of the pages. We can iterate from the start of the file at 0x2000

7/14

(page sized) increments and inspect the validity of each header. Wherever we don’t have a
valid header, we at least know that something is going on at that location which we can
investigate further as needed.

For example, if we wanted to verify that a specific page is valid, we ascertain that the first
byte is either a 1 or a 0, and if it is a 1, we go to the 0x20 offset from the start of the header,
pull out the 4-byte value there, and calculate whether the PageIndex value matches the
offset to the start of the page header. We also further validate that the database identifier is
consistent throughout.

Figure 16. Calculating the PageIndex value

If none of the above conditions are satisfied, then we are looking at corrupted data and we
can begin to programmatically identify all these areas. In our case, these were almost
exclusively the unintended encrypted regions we outlined earlier.

If the above conditions are indeed satisfied, we know that we have a valid page at its correct
location, so we can note that as well.

Where the conditions are half satisfied is where it gets interesting i.e., we pass the PageType
and Database Identifier check but the PageIndex value doesn’t match the offset to the start
of the page header. We classify these as a misaligned header because the PageIndex
value is pointing to the location of where this header is supposed to be:

8/14

Figure 17. Identifying a misaligned header (off by 0x1000 bytes)

Also, whenever we hit a zero page (PageType == 0), we can safely ignore and continue.

Moving closer to the ultimate goal: successfully restoring all encrypted
database files

In the sections described above, we discussed the commonality that all of these database
files share: their file format. We outlined the characteristics of an algorithm that can validate
the integrity of these database files and categorized four types of classifications by
leveraging our understanding of how a .ndf database file is supposed to be structured. This,
in theory, should be able to deal with all intended and unintended corruption the encryptor
and decryptor are known to impose.

Now it's time to put this theory and understanding into practice and build upon this algorithm
to achieve our ultimate goal: the successful restoration of all encrypted database files.

Recovering encrypted and corrupted database files

With the stage now set given that all known underlying issues have been exposed, we
approached the problem in the following manner.

1. Identify and decrypt (fully) any encrypted database files with our homemade decryptor
2. Process the output of step 1 and account for any misaligned page headers accordingly
3. Process the output of step 2 and “clean up” the final remnants of leftover data from the

misaligned headers

9/14

Step 1. Identify and decrypt (fully) any encrypted database files with our homemade
decryptor

We come back to our homemade decryptor now. The details of how our homemade
decryptor works under the hood are not as relevant as understanding how we’re going to
leverage it. More important is being able to identify all the encrypted regions throughout the
file and not letting the modified LockBit 2.0 decryptor loose on it to further destroy it.

But the primary structure of our decryptor is to identify, decrypt, and extract the necessary
initialization vector and AES key for the encrypted file, and then utilize this information to
carry out the AES decryption through the mbedtls library, which is exactly the same 3 party
library that the Lockbit 2.0 developers are using.

Figure 18. AES decryption through

the mbedtls library

The approach we took to finding the encrypted regions was outlined earlier and revolves
around what a valid, misaligned, or null page is expected to look like. We further build on this
with our decryptor by adding Shannon entropy checks on buffers of 0x1000 bytes in size.
Any buffer that has a very high level (>= 7.8), we will decrypt and then further validate the
decrypted data based on what a page header constitutes.

Taking advantage of the fact that a .ndf file is so “well” structured i.e., every 0x2000 bytes will
always follow a guaranteed format, we can run this algorithm to identify every encrypted
region within the file and successfully decrypt it. Further validation after the decryption is also
required because .ndf file formats unsurprisingly house compressed data which can flag on
our entropy scan. We need to ignore all these cases and leave them as is.

Below is the successful output for step one. Also note, for one file the distance between
encrypted regions is at 0xA000000 intervals, whereas the other is at 0x17570000 intervals.
Again, the effects of the unpredictable nature of malformed asynchronous I/O, which do not
pose a threat anymore.

rd

https://github.com/ARMmbed/mbedtls
https://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication

10/14

11/14

Step 2. Process the output of Step 1 and account for any misaligned page headers
accordingly

Now that we can successfully decrypt the files, we need to account for any headers that are
misaligned. We saw how to do this earlier by comparing the PageIndex field inside the page
header. This is the index value that identifies where this particular page needs to be inside
the .ndf file. Refer to the misaligned header on Figure 17.

Similar to how we found all the encrypted regions, we will proceed in the same manner
(excluding the Shannon entropy check this time) of validating each expected page header,
and in any instances where there is a case of misalignment, we will create a new file where
we correctly insert it at its expected location. We will, of course, copy over all the already
valid and existing data into the new file as well. This new file will then be fully decrypted and
more importantly, correctly aligned.

12/14

Figure 19. Validating misaligned headers

13/14

Figure 20. Before and after header alignment

Step 3. Process the output of step 2 and “clean up” the final remnants of leftover data
from the misaligned headers

This is great and all and certainly brings us very close to fully realizing our ultimate goal,
however, the data still present at the misalignment location is just that: still present. We need
to do something about this leftover data.

One approach is to place “dummy” headers at these locations, in the hopes they satisfy the
loading of the database file. But playing the dummy roles ourselves, we opted to just null
these locations. Again, we follow the same pattern of validating the headers, but this time we
know there cannot be any more misalignment, so for any leftover data that we encounter we
simply null that entire page, making it in effect a null/empty page. Naturally, this loses the
data there but is a willing compromise to make since these entries at this state should be far
and few in between compared to the enormity of the entire database file.

Combining all three steps outlined above led to the full restoration of the MSSQL database
files to the extent that was possible, even reverting their functionality back to normal in the
majority of cases. Throughout our analysis, we also had an internal MSSQL subject matter
expert (SME) continuously verify our undertakings and found around 7 million
inconsistencies with the initial, corrupted files, give or take, down to just single thousand
digits after the entirety of our restoration process was completed. Conjuring up SQL queries
became possible once again, and although at DART we prefer our KQL, we still carry a
fondness for our SQL predecessors.

Conclusion

LockBit 2.0 is one of the leading ransomware strains currently active and has been over the
last six months. DART became engaged with a particular customer where we were exposed
to our first instance of a Lockbit 2.0 afflicted customer, curiously interested in the plausibility
of recovering their corrupted database files. Through the combined efforts of this customer
and DART, we were able to successfully satisfy the customer’s curiosity and in doing so,
outlined the implications “buggy code” can have, and given the right set of circumstances,

https://techcommunity.microsoft.com/t5/security-compliance-and-identity/leveraging-the-power-of-kql-in-incident-response/ba-p/3044795

14/14

can paradoxically become a catalyst to make recovery of destroyed, critical database files a
reality, even though it was the original culprit responsible for corrupting them in the first
place.

It is typical in incident response engagements for incident responders to identify the full
functionality of any collected samples, extract all relevant forensic evidence that can further
facilitate the ongoing investigation, all while having proper detections in place. However, we
simply cannot overlook our ultimate goal as cybersecurity consultants: that of satisfying the
needs of our customers, who as any organization victim to a devastating cyber attack, is
seeking the right guidance and support. If those needs are within our means, we have a
responsibility to act on them.

https://www.microsoft.com/security/blog/2020/03/09/real-life-cybercrime-stories-dart-microsoft-detection-and-response-team/

