
1/14

March 11, 2022

Part 2: LockBit 2.0 ransomware bugs and database
recovery attempts

techcommunity.microsoft.com/t5/security-compliance-and-identity/part-2-lockbit-2-0-ransomware-bugs-and-database-
recovery/ba-p/3254421

In Part 1 of this series (which you can find here), we provided background about our analysis

of the LockBit 2.0 ransomware and described our suspicions that "faulty crypto" was at play.

In this post, we will outline the issues that the decryptor poses and how we simply cannot

trust it and must remove it from any equation we intend on using to successfully decrypt

these database files.

Disclaimer: The technical information contained in this article is provided for general

informational and educational purposes only and is not a substitute for professional advice.

Accordingly, before taking any action based upon such information, we encourage you to

consult with the appropriate professionals. We do not provide any kind of guarantee of a

certain outcome or result based on the information provided. Therefore, the use or reliance

of any information contained in this article is solely at your own risk.

If only it were so easy…

Our earlier Procmon observations identified the encryptor randomly encrypting 65k bytes

after it was only supposed to encrypt the first 4k. So, while we do successfully decrypt the

intended encrypted region of the encrypted file, which is the first 0x1000 bytes, we fail to

identify and decrypt the unintended regions which are splattered throughout the now-

decrypted file due to the bug we’ve outlined in the encryptor.

And as this is a customer-provided file, we don’t have the luxury of a Procmon or TTD trace

to quickly identify the corruption. To tackle this problem, we instead crafted an algorithm

that will be outlined shortly, that can scan the encrypted file and identify all regions of

unintended encryption.

https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-2-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254421
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-1-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254354
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/part-1-lockbit-2-0-ransomware-bugs-and-database-recovery/ba-p/3254354

2/14

Figure 12. Example of our first implementation of the algorithm that identifies regions of

unintended encryption

3/14

Figure 13. Valid data and corrupted data

In case it’s not clear by now, patience, the willingness to remain calm and wait, seems to be a

virtue that is prioritized in blocking I/O. Due to the LockBit 2.0 developers not giving this

virtue its due diligence, it gets worse for us in the regard that the decryptor itself suffers from

the exact same bugs as the encryptor. It fails to handle STATUS_PENDING states; it

falsely assumes all NTSTATUS errors/non-successes values are signed. To put it much more

succinctly, we cannot trust the decryptor.

4/14

Figure 14. Part of the decryptor code that illustrates the trust issues that we have with it

Because of suffering from the identical misconceptions as the encryptor, when decrypting the

database file that ended up having the appearance of being correctly decrypted, it in actuality

further corrupted the file trying to decrypt regions that were never encrypted to begin with!

These random regions further complicate the situation for us and now force us to deal with

them. Or do they? Fixing the encrypted unintended regions that were a result of the

encryptor is a logical step; fixing the newly encrypted regions from software that is solely

responsible for decrypting is not. So, to make our lives easier we took the logical high road

and decided to make our own decryptor.

5/14

Encryption overspill and rebuilding database files

Before outlining our decryptor and the details of the algorithm alluded to earlier, we must

point out yet another subtlety that must be addressed. Due to the unpredictable behavior the

encryptor is capable of we are facing further issues, outside of the encryption procedure

itself, of potentially irrecoverable corruption. The best way to see this is to have some

semblance of the underlying structures involved for a .ndf file, which is the format of the

database files that we had to work with. The understanding of this structure, at least the

essential parts relevant to us, serves as the basis for our recovery algorithm.

For our purposes, it suffices to understand that for every 0x2000 bytes, we have what are

called pages. Each page begins with a header that is 0x60 bytes in size. Pages can also be

classified as empty; 0x2000 bytes full of 0’s.

The header contains valuable metadata that we can leverage to identify areas of corruption.

Upon careful examination and side-by-side comparison of all the .ndf files that we had to

work with, we were able to uncover three relevant properties in the header that would serve

as the cornerstone of our recovery algorithm.

6/14

Figure 15. Illustration of all three properties as shown in a hex editor

The PageType field identifies the type of that individual page, which from our understanding

can either be a 1 (an occupied page) or a 0 (unoccupied/empty page). The PageIndex

property identifies the current page and its location within the database file.

So, ”Page 0” would be at “index 0”; “Page 1” would be at “index 1”, and so on. It is a way to get

to individual pages inside the .ndf file. And speaking of the database file itself, what follows

the PageIndex is yet another unique value that serves to identify the entire .ndf file as a

whole. In the above case this is indicated by the value “4”, but other database files had “3” as

a value here instead. What we care about, which is being able to identify the integrity of each

individual page that we come across, is that this is a value that we know must be constant

throughout each page for each database file we are processing.

7/14

From having a sufficient understanding of the page header, we can construct an algorithm to

verify the integrity of each individual page, which in turn allows us to also identify any

potential corruption to any of the pages. We can iterate from the start of the file at 0x2000

(page sized) increments and inspect the validity of each header. Wherever we don’t have a

valid header, we at least know that something is going on at that location which we can

investigate further as needed.

For example, if we wanted to verify that a specific page is valid, we ascertain that the first

byte is either a 1 or a 0, and if it is a 1, we go to the 0x20 offset from the start of the header,

pull out the 4-byte value there, and calculate whether the PageIndex value matches the offset

to the start of the page header. We also further validate that the database identifier is

consistent throughout.

Figure 16. Calculating the PageIndex value

If none of the above conditions are satisfied, then we are looking at corrupted data and we

can begin to programmatically identify all these areas. In our case, these were almost

exclusively the unintended encrypted regions we outlined earlier.

If the above conditions are indeed satisfied, we know that we have a valid page at its correct

location, so we can note that as well.

Where the conditions are half satisfied is where it gets interesting i.e., we pass the PageType

and Database Identifier check but the PageIndex value doesn’t match the offset to the start

of the page header. We classify these as a misaligned header because the PageIndex value

is pointing to the location of where this header is supposed to be:

8/14

Figure 17. Identifying a misaligned header (off by 0x1000 bytes)

Also, whenever we hit a zero page (PageType == 0), we can safely ignore and continue.

Moving closer to the ultimate goal: successfully restoring all encrypted
database files

In the sections described above, we discussed the commonality that all of these database files

share: their file format. We outlined the characteristics of an algorithm that can validate the

integrity of these database files and categorized four types of classifications by leveraging our

understanding of how a .ndf database file is supposed to be structured. This, in theory,

should be able to deal with all intended and unintended corruption the encryptor and

decryptor are known to impose.

Now it's time to put this theory and understanding into practice and build upon this

algorithm to achieve our ultimate goal: the successful restoration of all encrypted database

files.

Recovering encrypted and corrupted database files

With the stage now set given that all known underlying issues have been exposed, we

approached the problem in the following manner.

1. Identify and decrypt (fully) any encrypted database files with our homemade decryptor

2. Process the output of step 1 and account for any misaligned page headers accordingly

3. Process the output of step 2 and “clean up” the final remnants of leftover data from the

misaligned headers

9/14

Step 1. Identify and decrypt (fully) any encrypted database files with our homemade
decryptor

We come back to our homemade decryptor now. The details of how our homemade decryptor

works under the hood are not as relevant as understanding how we’re going to leverage it.

More important is being able to identify all the encrypted regions throughout the file and not

letting the modified LockBit 2.0 decryptor loose on it to further destroy it.

But the primary structure of our decryptor is to identify, decrypt, and extract the necessary

initialization vector and AES key for the encrypted file, and then utilize this information to

carry out the AES decryption through the mbedtls library, which is exactly the same 3 party

library that the Lockbit 2.0 developers are using.

Figure 18. AES decryption through the mbedtls library

The approach we took to finding the encrypted regions was outlined earlier and revolves

around what a valid, misaligned, or null page is expected to look like. We further build on

this with our decryptor by adding Shannon entropy checks on buffers of 0x1000 bytes in

size. Any buffer that has a very high level (>= 7.8), we will decrypt and then further validate

the decrypted data based on what a page header constitutes.

Taking advantage of the fact that a .ndf file is so “well” structured i.e., every 0x2000 bytes

will always follow a guaranteed format, we can run this algorithm to identify every encrypted

region within the file and successfully decrypt it. Further validation after the decryption is

also required because .ndf file formats unsurprisingly house compressed data which can flag

on our entropy scan. We need to ignore all these cases and leave them as is.

Below is the successful output for step one. Also note, for one file the distance between

encrypted regions is at 0xA000000 intervals, whereas the other is at 0x17570000

intervals. Again, the effects of the unpredictable nature of malformed asynchronous I/O,

which do not pose a threat anymore.

rd

https://github.com/ARMmbed/mbedtls
https://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication

10/14

11/14

Step 2. Process the output of Step 1 and account for any misaligned page headers
accordingly

Now that we can successfully decrypt the files, we need to account for any headers that are

misaligned. We saw how to do this earlier by comparing the PageIndex field inside the page

header. This is the index value that identifies where this particular page needs to be inside

the .ndf file. Refer to the misaligned header on Figure 17.

Similar to how we found all the encrypted regions, we will proceed in the same manner

(excluding the Shannon entropy check this time) of validating each expected page header,

and in any instances where there is a case of misalignment, we will create a new file where we

correctly insert it at its expected location. We will, of course, copy over all the already valid

and existing data into the new file as well. This new file will then be fully decrypted and more

importantly, correctly aligned.

12/14

13/14

Figure 19. Validating misaligned headers

Figure 20. Before and after header alignment

Step 3. Process the output of step 2 and “clean up” the final remnants of leftover data
from the misaligned headers

This is great and all and certainly brings us very close to fully realizing our ultimate goal,

however, the data still present at the misalignment location is just that: still present. We need

to do something about this leftover data.

One approach is to place “dummy” headers at these locations, in the hopes they satisfy the

loading of the database file. But playing the dummy roles ourselves, we opted to just null

these locations. Again, we follow the same pattern of validating the headers, but this time we

know there cannot be any more misalignment, so for any leftover data that we encounter we

simply null that entire page, making it in effect a null/empty page. Naturally, this loses the

data there but is a willing compromise to make since these entries at this state should be far

and few in between compared to the enormity of the entire database file.

Combining all three steps outlined above led to the full restoration of the MSSQL database

files to the extent that was possible, even reverting their functionality back to normal in the

majority of cases. Throughout our analysis, we also had an internal MSSQL subject matter

expert (SME) continuously verify our undertakings and found around 7 million

inconsistencies with the initial, corrupted files, give or take, down to just single thousand

digits after the entirety of our restoration process was completed. Conjuring up SQL queries

became possible once again, and although at DART we prefer our KQL, we still carry a

fondness for our SQL predecessors.

Conclusion

https://techcommunity.microsoft.com/t5/security-compliance-and-identity/leveraging-the-power-of-kql-in-incident-response/ba-p/3044795

14/14

LockBit 2.0 is one of the leading ransomware strains currently active and has been over the

last six months. DART became engaged with a particular customer where we were exposed to

our first instance of a Lockbit 2.0 afflicted customer, curiously interested in the plausibility of

recovering their corrupted database files. Through the combined efforts of this customer and

DART, we were able to successfully satisfy the customer’s curiosity and in doing so, outlined

the implications “buggy code” can have, and given the right set of circumstances, can

paradoxically become a catalyst to make recovery of destroyed, critical database files a

reality, even though it was the original culprit responsible for corrupting them in the first

place.

It is typical in incident response engagements for incident responders to identify the full

functionality of any collected samples, extract all relevant forensic evidence that can further

facilitate the ongoing investigation, all while having proper detections in place. However, we

simply cannot overlook our ultimate goal as cybersecurity consultants: that of satisfying the

needs of our customers, who as any organization victim to a devastating cyber attack, is

seeking the right guidance and support. If those needs are within our means, we have a

responsibility to act on them.

https://www.microsoft.com/security/blog/2020/03/09/real-life-cybercrime-stories-dart-microsoft-detection-and-response-team/

