In-depth Technical Analysis of Colibri Loader Malware

= cloudsek.com/in-depth-technical-analysis-of-colibri-loader-malware

Marah Aboud March 10, 2022

In-depth Technical Analysis

Colibri Loader

Malware

On 27 August 2021, cybersecurity researchers discovered a malware loader dubbed Colibri
being sold on an underground Russian forum. The actors claim that the loader is stealthy and

can be used to target Windows systems, to drop other malware onto the infected system.

Features of the Colibri loader malware

The features of the loader, as listed in the advertisement, include the following:

The loader is written in C/ ASM.

It works on Windows operating systems including Windows servers.

The loader does not have dependencies, indicating that the loader works without
relying on other entities from the system.

The loader does not have an IAT (Import Address Table) that contains used WinAPI
functions.

Colibri loader has only two sections in the PE structure namely the “.text” (code
section) and the “.reloc” (relocation section).

All the strings in the loader as well as the connection channel between the C2 server
and the loader are encrypted.

1/7

https://cloudsek.com/in-depth-technical-analysis-of-colibri-loader-malware/

B:: oo Gotonew | Track

| present to your attention my development - Colibri Loader. The software is designed to deliver and run your executable files and dil libraries on infected PCs.

Ideal for people with large volumes of traffic and lack of time to study the material.

The bot is written in C | ASM (crt, stl are not used), works on Windows 7/8/10/11 and server counterparts, without any dependencies . Easy to encrypt (does
Th tha not contain resources, AT, TLS, only relocks and code section). All internal string literals are encrypted, traffic between the bot and the C&C server is also

encrypted. Supplied in two formats:

01.04, 2020
334 .exe - weight ~ 20kb, does not require any additional manipulations with the crypt.
ML dil - weight ~ 17kb. Not installed on the system! Running through the exported function.

0.0086 B X
Bot functionality:

+ Run .exe from user or from admin (runas + cmd), support for launch arguments
* Running xB6 .exe / .dil in memory via LoadPE

» Running x86 .dil via rundll32

+ Running xB6 .dil via LoadLibrary

* Running xB6 .dll via regsrv32

+ Executing cmd commands

» Updating the bot with a fresh crypt or a new version

+ Removing a bot from an infected device

Threat actor’s post on the cybercrime forum about the Colibri Malware Loader

Threat actor’s post on the cybercrime _forum

Technical Analysis of Colibri

Unpacking the loader

Colibri loader comes packed in a trojanized executable file. By using x64dbg (debugger) and
putting breakpoints on the function VirtualAlloc we were able to extract the actual payload of
the Colibri loader.

Packed sample 74c4124e€9c025d55c4dd8aca8b91fce3

Colibri unpacked sample 58FEE16BBEA42A378F4D87DOESAGFICS

The self-modifying code in the malware

By testing the extracted payload with PEStudio it is evident that the payload has only two
sections, .text (Code Section) and .reloc (Relocation Section). The results of scanning the
payload also show the existence of a self-modifying section in the code. This implies that the
payload is capable of dynamically resolving other parts of the code that are not accessible
through static analysis of the payload.

By running the payload in an IDA debugger we will be able to resolve the self-modifying code
section of the payload.

2/7

property value value
name dext reloc
md5 ACB635390715F3F3463E8F38... A4CT26964B1A2C9FASD3IERC...
entropy 6.182 4,398
file-ratio (70.83%) 66.67 % 417 %
raw-address 0x 00001000 0x 00005000
raw-size (17408 bytes) 0x 00004000 (16384 bytes) O 00000400 (1024 bytes)
virtual-address 0x036E1000 0x036E5000
virtual-size (15460 bytes) Ox00003A1C (14876 bytes) (x0D000248 (584 bytes)
entry-point 0x0000460D
characteristics OxEOO00020 Ox42000040
writable X -
executable X
shareable
discardable
initialized-data
uninitialized-data
unreadable
self-modifying x
virtualized
file

Two sections that exist in the payload, besides the self~-modifying property
.text:@36E460D start:
.text:@36E460D push ebx
.text:@36E460E push esi
.text:@36E460F push edi
.text:@36E4610 jz short near ptr loc 36E4614+1
.text:@36E4612 jnz short near ptr loc_36E4614+1
.text:@36E4614
.text:@36E4614 loc 36E4614: ; CODE XREF: .text:036E461017
.text:@36E4614 ; -text:@36E461215
.text:036E4614 mov eax, 6GDE8h
.text:@36E4619 add [ebx+eax+75h], dh
.text:@36E461D add [eax-1CBE18h], edi
.text:@36E4623 jmp fword ptr [eax-48h]
cAEXEI@IOEAB23 - - - m o - oo o m o m e m
.text:@36E4626 dw ©@Bh
.text:036E4628 dd 59026A00h, 309ESh, OEDBA@®h, OC88BAF9Bh, OFFDA71ESh
. text:@36E4628 dd QESD@FFFFh, OFFFFEF22h, 3B74C@85h, 1750374h, ODE7FE8B8h
.text:036E4628 dd 374FFFFh, @E8B80175h, @FFFFF263h, 1750374h, OF7AFESBSh
. text:@36E4628 dd 3068FFFFh, 6AR@AA75h, @C7E85902h, ©BAGGOREZh, AF9BBBEDH
.text:036E4628 dd 2FE8C88Bh, @FFFFFFD4h, 5FD9EBD®h
AeXEI@36EABBA ; oo
.text:036E4684 pop esi
.text:@36E4685 pop ebx
.text:0@36E4686 retn

The self-modifying code

3/7

.text:034B466D public start
.text:034B460D start:

.text:034B460D pdsh ebx

.text:034BA60OE push esi

.text:034B460F push edi

.text:034B4610 jz short loc_34B4615

.text:034B4612 jnz short loc_34B4615

text:@34B4612 ; ---------- - -
.text:034B4614 db @B8h ;

SEeXEI@34BAGLS ; - - - - oo s
.text:034B4615

.text:034B4615 loc_34B4615: ; CODE XREF: .text:034B46101j
text:034B4615 ; -text:034B461217

.text:034B4615 call loadmodules

.text:034B461A jz short loc_34B461F

.text:034B461C jnz short loc_34B461F

AEXEIB3ABAGLC ; - oo
.text:034B461E db @B8h ;

SEeXEI@3ABAGIF § - - - - oo
.text:034B461F

.text:034B461F loc_34B461F: ; CODE XREF: .text:034B461ATj
text:034B461F ; .text:934B461CTJ
.text:034B461F call createmutex

Dynamically resolved code section

IAT dynamic resolving

To avoid detection by AVs statically, the payload’s author hashes all WinAPI functions,
ignoring the Import Address Table (IAT), which aids in recognising the malware’s activity
statically. The payload resolves the function names dynamically using XOR and Shift
operations. After resolving the function name, the address of the function is stored in eax
register and a call function is created.

text:034B4631 mov edx, 4F9BOOEDh
text:834B4636 mov ecx, eax

text:034B4638 call getFunc

text:034B463D call eax ; sleep

Dehashing the function name

v7 = pointertoFile + *(_DWORD *}(v4 + pointertoFile + 0x28);
V18 = v7;
= pointertoFile + *{_DWORD *})(v4 + pointertoFile + @x24);
(tve)

return @;
while (dehashFunc((unsigned intl6 *)(pointertoFile + *({ DWORD *)(v7 + 4 * counter))) != hexvalue)
{

v7 = v1e;

if (++counter >= vb)

return @;

W
\/

9
if

¥

return pointertoFile + *{_DWORD *}(v6 + pointertoFile + 4 * *(unsigned _ intl6 *){v9 + 2 * counter));

Dehashing the function names

Kill itself if there is already a running instance process of it

47

Before running on the system, the payload creates a mutex by calling the function
CreateMutexW and then tests if there is an instance of the payload already running on the
infected system. If there is an existing running process of payload on the system, the payload
calls the ExitProcess function and exits the execution. If there is no instance of the payload
running on the system, the payload continues the execution and calls the Sleep function to
sleep for 3 seconds as a simple way to evade protection.

.text:@34B29A7 call getFunc

.text:034B29AC call eax ; CreateMutexi
.text:@34B29AE push 2

.text:034B29B6 pop ecx

.text:834B29B1 call switch

.text:@34B29B6 mov edx, OB7BF6C92h

.text:034B29BE mov ecx, eax

.text:034B29BD call getFunc

.text:834B29C2 call eax ; GetlLastError
.text:034B29C4 cmp eax, @B7h ; "-°

.text:834B29C9 jnz short loc 34B29E2

] e =]

.text:034B29CB push esi

.text:834B29CC push 2

.text:0834B29CE pop ecx

.text:034B29CF call switch

.text:034B29D4 mov edx, OF7A461D7h

.text:834B29D9 mov ecx, eax

.text:034B29DB call getFunc

.text:034B29E0 call eax ; ExitProcess

'

Check the existence of the payload on the system

The connection with the C2 server

To make the static analysis more difficult and to evade detection, the author of this malware
has encrypted all the strings. After resolving the function names dynamically and using the
debugger, the strings extracted from the payload will have the following artifacts:

e IP address of the C2 server 80.92.205.102
e URL with another payload to be downloaded /gate.php

The payload first initializes the use of WinlInet functions by calling InternetOpenW, followed
by which it opens the HTTP section with the function InternetConnectW. The payload
creates an HTTP request by calling the function HttpOpenRequestW under the following
parameters:

5/7

e The type of request: /GET

e Name of the target object: /gate.php?type=check&uid=59045F4FF04F133112200
e HTTP version to be used in the request: HTTP/1.1

After this, the payload sends the GET request to the server by calling the function
HttpSendRequestW. Then, the payload calls the function InternetQuerybataAvailable
to determine the amount of requested data. Based on the results of the previous function
calls, the payload reads the data by calling the function InternetReadFile .Our

assumption is that the payload requests the C2 server and downloads another payload on the
system.

The payload calls the function CryptStringToBinary ,to decrypt dataafter downloading the
data from the C2 server, which indicates that the data could be encrypted.

~Frame: Number = 539, Captured Frame Length = 173, MediaType = ETHERNET
ﬂﬁﬁmﬂrnet: Etype = Internet IP (IPvd),DestinationfAddress:[08-00-27-49-74-

H-Ipvd: Src = 10.152.152.23, Dest = 580.%2.205.102, Next Protocol = TCP, Pe
ﬁﬂrcp: Flags=...&P..., SrcPort=59524, DstPort=HTTP(80), PayloadLen=115, S35e
ﬁyHttp: Request, GET /gate.php, Query:type=checksuid=59045F4FF04F13311220(
- Command: GET

H-URI: /gate.php?type=check&uid=5%045F4FF04F1331122007

-~ ProtocolVersion: HTTPE/1.1

~Userhgent: BSnEgmdAJ¥edICEZXZrKO

-~Host: B80.92.205.102

-HeaderkEnd: CRLF

GET request to the C2 server

Indicators of Compromise — Colibri Loader Malware

MD5 74c4f24e9c025d55c4dd8aca8b91fce3

58FEE16BBEA42A378F4D87DOESAGFIC8

IP 80.92.205.102

URL 80.92.205.102/gate.php?
type=check&uid=59045F4FF04F 133112200

Conclusion

Colibri loader is a type of malware that is used to load more types of malware into the
infected system. This loader has multiple techniques that help avoid detection. This includes,
omitting the IAT (Import Address Table) along with the encrypted strings to make the

6/7

analysis more difficult. Like any other loader malware, the Colibri can be used to install
information-stealing malware which may result in substantial loss of sensitive information.
Thus, users should be wary of any unknown files on their systems.

Marah Aboud

Marah is an MTech Cyber Security student, interested in
malware and reverse engineering. She is passionate about
threat intelligence research. Listening to music, travelling,
meeting new friends are parts of her personality.

Hansika Saxena

Total Posts: 2

Hansika joined CloudSEK’s Editorial team as a Technical
Writer and is a B.Sc (Hons) student at the University of
Delhi. She was previously associated with Youth India
Foundation for a year.

Janet Jose

Cyber Intelligence Editor, CloudSEK

Total Posts: 2

She is a Cyber Intelligence Editor at CloudSEK. A lawyer by
training and a content writer by choice, she prefers to write
on matters concerning current affairs, security, and human
frailty.

7/7

https://cloudsek.com/author/marah-aboud/
https://cloudsek.com/author/hansika-saxena/
https://cloudsek.com/author/janet-jose/

