
1/8

@cryptax March 8, 2022

Live reverse engineering of a trojanized medical app —
Android/Joker

cryptax.medium.com/live-reverse-engineering-of-a-trojanized-medical-app-android-joker-632d114073c1

@cryptax

Mar 8

·

5 min read

A few days ago, a tweet reporting an Android malware caught my attention, because it was
apparently found inside a health-related application named “Health Index Monitor”.

https://cryptax.medium.com/live-reverse-engineering-of-a-trojanized-medical-app-android-joker-632d114073c1
https://cryptax.medium.com/?source=post_page-----632d114073c1--------------------------------
https://cryptax.medium.com/?source=post_page-----632d114073c1--------------------------------
https://twitter.com/ReBensk/status/1500700786614931458

2/8

A tour inside Cordova…

The name of the package is com.monotonous.healthydiat , and the main activity is
com.monotonous.healthydiat.MainActivity . Its code is extremely simple, and we

quickly recognize the use of Cordova:

public class MainActivity extends CordovaActivity { //
org.apache.cordova.CordovaActivity, android.app.Activity public void
onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState);
loadUrl(this.launchUrl); }}

3/8

Cordova is a (not malicious) framework for creating cross-platform mobile apps using web
technologies, meaning that the app’s code is not to be found in the DEX, but within assets
web pages:

The app’s main entry point is in the assets: www/index.html
Half grumbling because I don’t like to read web files, I started poking into them, and found
they were reaching out to a health website. At the time of my analysis, this website was
down and could have hosted malicious code, but it just didn’t sound like what I’d expect from
a malware.

A dynamically loaded DEX!

I continued inspecting the APK and noticed DroidLysis said the app was using
DexClassLoader , a well-know class for dynamically loading Dalvik Executables, and often

used by malware to hide and run malicious payload.

Dex class loading apparently occurred in class b/a/b$a , for sure an obfuscated name, but
I wondered how we got there, the MainActivity being so small.

Actually, the call occurs before the main activity, from the App class which extends
Application (this is a known “trick” used by packers). And there I saw the call new
b(...)

http://10.10.0.46/%60

4/8

import a.b.a.c;
import android.app.Application;

 import b.a.b;

 App Application { @Override onCreate() { .onCreate(); b(
c().getContext()).setGravity(100); }}

Frida hook

To get the payload DEX, we need to retrieve the DEX which is provided to the
DexClassLoader constructor. As usual, I created a Frida hook and ran the malware.

The payload DEX is /data/user/0/com.monotonous.healthydiat/app_/v1
The v1 file is the payload DEX 😃.

Once the DEX is loaded, the packer loads a class named yin.Chao , and inside that class,
calls a method named yin .

Use of reflexion to load method yin() from the dynamically loaded class yin.Chao.

Reversing v1 , the dynamically loaded DEX

There are two places to inspect:

5/8

1. Method yin from class yin.Chao
2. A service named NerService , inside com.monotonous.healthydiat , and

mentioned by the app’s manifest. This service is implemented in the dynamically
loaded DEX.

Method yin asks for the end-user to grant permissions for READ_PHONE_STATE and
READ_CONTACTS , and add the app as a notification listener (this enables the app to read

and interact with any notification). Note that this should sound suspicious to an average end-
users: why would a health app need those?!

Once this is done, yin loads a remote JAR from a remote HTTPS website and calls a
method named canbye from com.canbye .

Dynamically loading a remote JAR. The JAR should be present inside the app’s directory,
inside ./files/logs. If that file does not exist, it is downloaded from the remote HTTPs website
and stored in logs.
Before we reverse the remote JAR, let’s finish with NerService . It is a notification listener,
and will catch any SMS notification, read the notification’s text message and send it to via
a custom intent.

6/8

Notice that onNotificationPosted() is only interested in notifications from SMS. The class
implements a post() method which grabs the notification text, broadcasts it and cancels all
other notifications.
This is an interesting way to steal SMS: the malware is not reading the SMS (thus no
need for READ_SMS permissions) but reading the!

Reversing the remote JAR canbye

This JAR only has a few classes, but they are dense 😉. Method canbye initializes a
shared preferences file (named bshwai) and sets a few entries such as an identifier based
on the phone’s Android ID or MAC address.

Then, the malware registers a SMS receiver. It will process all broadcast messages sent by
v1 (previous layer), store the messages and later sent them in JSON object to a remote

server. For an uncertain reason, the malware also directly intercepts incoming SMS
messages and particularly forwards those beginning with keyword rch to
hxxp://www.canbye.com/op/pair?remote=<int>&device_id=<id> . This is perhaps to

ensure the notification for this SMS is not shown to the victim, thus completely hiding the
SMS.

Report SMS with keyword rch to remote server.
We also notice other functionalities such as retrieving the list of accounts on the victim’s
phone and sending SMS messages: this depends on what the remote server instruct.

The canbye JAR implements a (malicious) Facebook component DEX which can be
downloaded from hxxps://canbye.oss-accelerate.aliyuncs.com/fbhx<INT> . This is a
fourth stage DEX!!! I haven’t reversed this one yet.

http://www.canbye.com/op/pair?remote=
https://canbye.oss-accelerate.aliyuncs.com/fbhx

7/8

Four stages for this malware!
We notice the first 3 stages with a Frida hook on java.net.URL and DexClassLoader :

The cutt.ly URL actually resolves to xni.oss-eu-central-1.aliyuncs.com. The file is
downloaded and stored as v1 and loaded. Then, the stage 3 is downloaded from
canbye.oss-accelerate.aliyuncs.com, and stored locally as a file named logs. Stage 4
download is not shown here.
This malware belongs to the Android/Joker family. The initial APK is detected as
Android/Joker.D!tr.dldr. For more references on the Joker family, please read here, here
and here.

— the Crypto Girl

Malicious URLs

IOC

https://www.zscaler.com/blogs/security-research/joker-playing-hide-and-seek-google-play
https://www.anquanke.com/post/id/211978
https://medium.com/csis-techblog/analysis-of-joker-a-spy-premium-subscription-bot-on-googleplay-9ad24f044451

8/8

5613c51caf6bece9356f238f2906c54eaff08f9ce57979b48e8a113096064a46 (this is
the APK)
0058f2bfc383c164f4263bf0ed6e9252b20c795ace57ca7b686b6133d183bb42 (this

is the payload DEX, named v1)
2da5ad942435714f52204d6955f7ae941d959dc275df75acd6aa15bfe81e653b (this is
canbye JAR, loaded by v1)
949a16417b183d55f766fa507cc8c1699cd73ffc5da9856bb35b315b678ac1d8

fbhx1 (a 4th stage DEX)
a3f5b26ba8102a63d9864ab8099eed7519244df8bc6464f888c515c7e3575f4e

fbhx2 (another possible 4th stage DEX)

