Daxin Backdoor: In-Depth Analysis, Part One

symantec-enterprise-blogs.security.com/blogs/threat-intelligence/daxin-malware-espionage-analysis

Threat Huter TeamSymantec

In the first of a two-part series of blogs, we will delve deeper into
Daxin, examining the driver initialization, networking, key exchange,
and backdoor functionality of the malware.

Following on from our earlier blog detailing the discovery of Backdoor.Daxin, Symantec’s
Threat Hunter Team, part of Broadcom Software, would like to provide further technical
details on this threat.

Used by a China-linked espionage group, Daxin exhibits technical sophistication previously
unseen by such actors. In particular, it implements communications features that appear to

have been designed for deep penetration of highly-secured networks. The focus of this blog
series is to document how these features were implemented.

117

https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/daxin-malware-espionage-analysis
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/daxin-backdoor-espionage

Daxin comes in the form of a Windows kernel driver. In this blog, we will detail the driver
initialization, networking, key exchange, and backdoor functionality. In our next blog, the
second of two, we will examine the communications and network features of the malware.

Our analysis is based on a Backdoor.Daxin sample (SHA256:
ea3d773438c04274545d26cc19a33f9f1dbbff2a518e4302addc1279f9950cef). The forensic
evidence collected by us indicates that this sample had been deployed in November 2021
against two separate organizations.

The described Daxin features are contained in many earlier Daxin variants unless stated
otherwise. The recent changes to the driver codebase are to support more recent Windows
versions and fix certain bugs.

Driver initialization

The Daxin sample analyzed appears to be packed with a standard VMProtect packer. Many
earlier samples feature an additional, outside, packing layer on top of VMProtect. That
outside packer was custom-made for the driver and even reused the same customized
encryption algorithm used in the final payload. We believe that the attackers decided to
remove that custom packer due to compatibility issues with recent Windows releases.

Whenever the driver is started, the code added by the packer decrypts and decompresses
the final payload, and then passes control to the entry point of the decompressed payload. At
this point, the malicious code is visible in kernel memory, albeit with some obfuscations.

The bulk of the payload initialization code is involved with the network stack of the Windows
kernel. This includes identification of some non-exported structures and hooking of the
Windows TCP/IP stack.

Daxin hooks the Network Driver Interface Specification (NDIS) layer by modifying every pre-
existing NDIS_OPEN_BLOCK for the TCP/IP protocol, where the ReceiveNetBufferLists and
ProtSendNetBufferListsComplete handlers are replaced with its own. For each of these
NDIS _OPEN_BLOCKs, the related NDIS M_DRIVER BLOCK may also be modified by
replacing any existing SendNetBufferListsHandler. When the SendNetBufferListsHandler is
not present, the corresponding NDIS_MINIPORT _BLOCK is modified by replacing
NextSendNetBufferListsHandler.

To identify all NDIS _OPEN_BLOCKs for the TCP/IP protocol, the driver relies on calling
NdisRegisterProtocol() to create and return a new head of non-exported ndisProtocolList.
Then it walks ndisProtocolList of every NDIS PROTOCOL_BLOCK comparing the Name
attribute of each visited NDIS_PROTOCOL_BLOCK structure with the string “TCPIP”. The
OpenQueue field of the matching structure points to the list of NDIS_OPEN_BLOCKSs to

217

hook. This basic technique is known and documented, but Daxin hooks a slightly different set
of handlers. We believe that these adjustments are not exclusive to Daxin and are driven by
architectural changes in Windows Network Architecture.

In order to identify the related NDIS_M_DRIVER _BLOCKs and NDIS_MINIPORT_BLOCKs,
the driver analyses “ndis.sys” machine code to locate non-exported
ndisFindMiniportOnGloballList() and ndisMiniDriverList. The relevant
NDIS_MINIPORT_BLOCKs are then obtained starting with the previously identified

NDIS _OPEN_BLOCKs, where the RootDeviceName of each instance is passed as a
parameter for the ndisFindMiniportOnGlobalList() call that returns the structure to hook.
Finally, to locate related NDIS M_DRIVER BLOCKs, the driver walks ndisMiniDriverList
checking the MiniportQueue list of each item for the already identified

NDIS_MINIPORT _BLOCKs.

Details of the hooking process demonstrated in this blog were captured in the lab using a
virtual machine with a kernel debugger attached.

When registering the fake protocol, Daxin calls the NdisRegisterProtocol() API passing a
ProtocolCharacteristics argument with the hardcoded Name attribute “NDISXRPT”.

3/17

https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Tereshkin.pdf

slnﬂ'nﬂ:pcm:m,
Eile Edit Wiew [Oebug Window Help

M

bey=

- WinDbge VL0 23000184 AMDES

FEEEFROI 60AITZ40
ki t

+0elD0 Hdi=d 0 hars

AGEIRAZAB000000D merw

qvard ptr [rspHa0h] . rax

2 30T Ide 02 P 248
ﬁffﬂﬁ'éﬂd!??ﬂ =Ead8s0000 call eald?734+0x2E0ED (fEEE£003 €0dIEREN)
* t

a3 7T T4+ 02 FE0
FEEEIA03 E043(540 90 []
s 4TI 4402 £ 251
FEEEER0D E0dIERE]l eBal0d0000 IRp eald?734+0x30297 (£EE££000° €0d40297)
ma dd 7T I+ 010297
FEEEEANI 604027 56 push rEi
BT 14408303298
ILEEfB[Ii E.IEId.I.O?H 40bk 3a B =1l 3kk

302%b:
iEEIiEIH Bl]d.iDZ‘]]:- ABEIEL movsEd TSl .ecx
=a Al 7T 14+ 03025
TEE1IB03 E0A4079e AEBLTAZ408 =11 r&l gquard piy [Eaped]
s IdTT I de0nd02ad
FEEEEA0D" €0dA02a) ePRIbSEEEE IRp eadd?734+0x2b931 (FEE££002°E0d3b331)
pmadd 7 I+l 2B
FEEEEA0I 60d3BFIL 4GAATEDL lsa i [rEitl]
a3 77144082935
TEEEEBR03 €0d3b93E e99lebifet IEp ea3d? P 34e0nadd2 (fEEEfE03 cl0d3addd)
=ad 7T 4+ lun2addd
FEEEEA0A" E0dImdd? 4BAITAZ400 L= gvord ptr [rsp+d]. r=i
o 37T 14+ D 2add?
TEEEIR03 E0d3add? 40BEDS Ll =1l 0ESh
s 3dTTIde Oudadde
FEEE£002 60dIadds 40dafl o sil, el
ma 3d 77 I+l 2addd
fEEEEANI GO0d3eddd 40B6EE =chg =il =il
pn 3dTT 144042 A 4@l
tEELER03 e0d3adel 428d35e?Adidif lea ral, [eadd? P 34e0n3ioe (fEE1S803°E041320e))
=ald 77 4+ ln2adad
fEEE£A03" E0dlad=? AEbbémd 9d0Z00 mow sl quord ptr [rs1+290Edh]
a3 7T I+ 0ndades
TERITRNI ENd3ades @351120000 inp @R A 773 0RThd 44 (PETEIB03 E0d3ba4dd)
s 3dTT 144 0u2bd44d
FEEEE00D° €0dIbAdd 400dbE2I07a%60 Llaa =i, [rs1+60A20733k]
p=add 77 Id+0n2bddb
FEEEEANI 60dIbddb e?ifmeffif inp eaid?734+0x2abBi (fEEEFA03° 60d3mbaE)
TEiital) eidiabee 48873424 xchg xd ptr [zap)

al rsi, quord ptr [rs

=a3d 77 d+lun2ab¥d . o= E
FEEEFAND E0dIabd] a%dbiF0000 inp madd 7714+ Ix2edmd (FEEEFADD E0dImdmd)
mm 3T I+ D]
TEEEIB03 EQcdIndad 3 EL 1]
HDISH H‘d.x:nh-gutu*?rntn:ﬂl:
FEEL£003° 639270 428bcd oy Tax, rsp
kd> u rip
KDIS5!Hd isRegisterFrotocol
SEELLB03 E29%cavsl 456hcd way TAX. ERp
fEEEEED3 E29caT5] 42895308 BV guord ptr Ertmn L rhy
fEEFER03 629ca?? ARR9AS10 ROV gword ptr [rax+llk]. rbp
fEEE£A03" E29ca7Eb ABAATOI0 (= qeord ptr [rax+20hk]. rs:
fEEEEAND 629cm7SE ST pu=h rdi
FEEEFBOI 62%aTal 4154 push riz
SEEEEB0I 629:caTh2 4155 push ¥13
FEEEfR03 629ceTRd 4156 push rid
kd> k2
Child-5] Fetiddr Call Sitm

00 (ESEESEG B9dal5dd EELITA03 60d3724m HDIS | NdisFegisterProtoonl
O] ftffEaee B9daltel ECLfE003 AOacTInY @add 7 T34 0nzT 2de
kd> dt #r@ ndas| HDISE0_P CEARACTERISTICE

_HDIS40_FROTOCOL_CHARACTERISTICS

€

B Bl] l.a.]urlfd.:m'?e:ralnrl . Db

40001 HinerHdisVersion [+

#0x002 Fillex ;o

+0xlD4 Resexrwed : o

+0el04 : o

+ 00 “B0d1257c woid +)
+0x010 © 3 60d1257e waid +0
+0x012

+0uel12 Se

+0el 20 TransferDetaConpletelandl=r [null})

+00 20 VanTransferlsteaCompletefandler : {oull)

40028 ResatCompletaband lar friell]

+0x030 RequestCompleteiand e [mall)

+0ul 38 ReceiweHandler (null)

+0el 38 VanBeceivelandlar {null})

+Dhe 0 Hﬂ:enne(nnplebu}{a.ndler {null}

g e G

a0/ ati &t aHan -r nul

+0el52 Hane e I'_'IJI’J.E_Q‘I'RHIG "HLISHRET "

+0x068 ReceiveFacketHandler : femll])

#0070 Pindidacteriispdler : OxEffEE807° 60d1357c wvoid +0
#0078 Unks E O=fEELEBNI E0d)l257e void 40
+0x080 PnfEventHandler frull)

+0xl82 UnloadHandler {null)

+0090 Boservediapdlers : [4] (mull)

+0b) CoSepdCompleteBandlsr © (null)

+0x0k3 CoStatusHand ler full)

#0ulch CokecelvePackatHandlar = (null)

wlxlc® CokfRegisterotifyHandler : (mull)

NdisRegisterProtocol()
call obfuscated by
VMProtect

TE

Ln0 ColD SyskKdSneS ProcO00s0 Thed 000 ASM OWE CAPS RLIM

Figure 1. Hardcoded name and obfuscated NdisRegisterProtocol() call.

Because the layout of the NDIS_OPEN_BLOCK structure changes between different
Windows builds, Daxin needs to determine the correct offsets to use. First it checks
NtBuildNumber against a set of hardcoded values for which NDIS OPEN_BLOCK offsets
are explicitly given (Figure 2).

4/17

@ Kerned 'netport=S0001, kay=

Eile Edit View [Oebug Window Help

= WinDbge 102000184 AMDES

k> 3 rip L40
an3d 7T I4a0xldad
fEELEB03 e0dllday
EE££003" 60dildab
013" 60d] ida=
03" 60d11db5s
03" 60d411dkBE
013" e0d11dbd
013" 60411421
]

013" 60d11dca
03" e0d11a40
03" e0d11ad2

g

g

-]

g

a

[

8

B

@

é

G037 60d]idda
B03° 60d] ldde
803" e0d]1ldeb
803 e0d118£0
803 E0dildfa
B03 G0d11=0d
B03 E0d11a09
803 60d11ml 3
903" e0d11eld
803" 60d11=27
803" 60d1iedl
B03 60d1led b
BO3 E0d11@3b
B03 e0dllede
G023 e0d1ledl
B03° 60d11mdb
803 60d11ad8
803" e0d1lmdan
B03"e0d1labd
803" 60d1imba
B03 E0d11e6l
803" 60d11e??
BO3"E0cd1llm??
803" e0d11elc
803 E0diledd
B03 60d11edd
03" 60d]11eba
803" e0d1lmBe
g03"e0d11e%l
B03" 60d11=90
803 E0d]limbs
803" 60d]1e%i
BO3 e0d]lesl
803" e0d1leal?
a
[
8
;]
g
g
i
8
L
g
é
[
8
B
g
g
[
8

03" G0d]li=bl
013" 60d]labi
03" e0d1labl
03 e0d1lebd
013" 6ldiiecd
013" 60d1 1=k
013" 60d]lech
037 e0d]lmes
03" e0d11adl
03" £0d11=d?

03" 60cd] ledi
03" 6041 1med
03" eldlies?
013" 60d] lmme
03" G0d1imil
13" 60d1lafd

428L0S14E 50000
iBdbil

AB8d 0dcbea0000
0fb710

bl ZLEEL
21taf0L?0000
bf01000000

1 eldlidcl Fohc

SI.I'aHI.'-'U[IEID
EdEQEUnHEEi

013" 60d11d8d8 3bo?

TT5a

| _=1'g
BV
Lema
BOVZE
call
P
o
il
ERp
1=

cep

ja
e70512040100%0010000

cT050c040100a0020000
cT050:04010080050000
cTOE0004010098 [I'SIZIl] o
=31d020000
e705eS030 10080 [IlDIJ nn
cT0sdin3010030010000
cTOEd20201009a0 20000
c706d3030100=0020000
eFE0010000 inp
bEL0Z30000 may
EEIEAD ERp
7237 ib
bEEI4LS0000 "oy
& Ibd0 l:l.n
7T
cT05a403010030 I'l]l:ll'l oo
cTiE9a030 1000010000
eFO0E02030 10008020000
sT059203010020020000
a3af 010000 jr,p
458542430
428d0d1de 30000 lm
ed7d5a0000 call
af Bl 1] Lt
75 in=
42840d1da30000 L
eSTOE1fEEE call
320 wor
=389010000 inp
448bcs (=
BEOOOS0000 [
4181210060E££8 and
idlbce sub
4L81c100100000 =dd
44368 (=]
7309 .
4284001090000 lea
ebll inp
bEIIOADD00 mow
44368 Enp
Tel2 b
A428d0d29=00000 lea
418kd1 oy
eB2IE1EEEE call
446kcE A
4cEbE42440 (=1
4584005 2290000 lea
4ok oy
A490bdd mOV
eB0EEIEEEE call

W Kol “netpost= 50001, key=

rax, q'lurd. prr [ea3d??34+0x112c8 (fEL££803 e0d2idch)]| File Edt View Debug Window Help
ISL.
:EI [ﬁjd.??l‘lﬂ[-[lxllil'-‘ﬂﬂ (FEEEEA03 60420780)]
x i
@a2d 77344 0x1008 ({40503 40411008) kd» dogs EEfff803° 60421208 11

edx, 1770k
mdy, 1
madd 77+ 0xded6 (EEEEER0D G0d11m3G)
edz. 1772h

waZd 77344 0n1m09 (TLEEE203° 60d] 1m0%)
eax, [rde-1080R]

enx, eda

e 3?7 34+ 0x1ed6 (EFEEEE03° Gid

wou deord ptr [eadd77i440x12108 803 60dZ21E
woyw dieord pte [@add7?73440=1211c BOZ e0AZ21E
wow decrd ptr [eald?TI4+0x12200 i
wov deord ptr [=a3d7734+0x12204 BO3"

mald 7P I+ 0x2026 (EFEEEE0T A0
wow deard pitr [#s3d77344021218
wow deced pry [eald7?TI440=1210ic
wow decerd ptr [eadd?TId+0=122
wow decerd pitr [=a3d7734+40x
eald? P I+0x2026 (£
max, 23F0h
dx, ax
ea2d? 734+
eax, 45670
dx. ax
ma3d?73A+0x087? (FFEEERDITG0411877)
wov deced pty [@ald7?73440=12108 (CL180803° 60AZZ1L
wow decrd ptr [eald?Tid+0x121fc (EEf£EB03° AOAZ31E
wov dword ptr [=sdd?FI4+0x12200 (EE££E002° 6042220
wov dword ptr [oadd?7I14+0x12204 (EE£EER03 6042220
m&d??34+ﬂm2026 (EEEEESDI 60AlZ0Z6)
rd=, 30k]
ICXE, gd.???lrl]x.‘l.ﬂ'.‘al] (EEEEL803 e0d20Tal)]
eald? P34+ 0xTEic (fEEEEE00 E0d1Taic)
al.al
eaid?734+0x1e9E (FEFCEE0I°604] 1a%f)
T, 5"3&7?34 +0x10760 (HEL1IB03 A042070LO0T]
ea?d. PR40w1008 (fECEER03 a0d11008)

ee&d.'-‘?3l+[|:12023 (EEEEER0T" G041 2020)
rd. e=i

wax, 600k

rad, IFFFFFO00R

rid, esi

r3d. 1000k

rd, sax

n3d.:'?3-l+l:lx]leﬁ (PLEEEB0T 60d] 1mch |

rox, [ea3d? 72 4+0x107e0 ({EEEEE03" e0d207al)
:ﬂ?d..’-'?ildfl]rlad.? (EEEEERD" 60dl1md?)

max. A00R

rid, sax

@nZd 7734 0nlmel (EAEED2037 0] 1wl)

rox, [eald? P24+ 0010810 (fEE££002" c0d20210)

edx, rid
eadd?734+0x1000 (E£EEE503° 60411008

T i
3

e o o s

CENdZILE
“eO0dZILE
tehdZaan
(EELLEROT" pDdZ220
A e0dlz0ze)

FOILEEEER03 e0d11aTY)

=
word
rcx, [eadd?
T8, rsi
rde.rl2
s 3d 77 344+0%0008 (FEEEERDIT 60411008)

EI Ei-l[lh
34+0x10840 [FEELER03 c0d20240)

81].

[=

8]
=]
0y
4]

S]]
cl

03]
1]

fEEEER0I60dZ1208 fEEEE800°6177hbbEE nt!HiBuildiusber
kd> de EEEEEAD2° Ei??b'bEB L1
{EEEEBDI 61 TTBLER 63

Eagh
-180h
L1390k
. 398k
. AC0h

@ remel netport= 0001 key=

File Edic Yeew [Debuy Window Help

ki dt ndiz! WDIS_OFEN_ELOCK FrotocollsxtOpss Ro
190k 40190 ProtocolHe=tOpes Frred
1Ak +lxlall BootDevicalass Prred
.208h +0x200 ProtSendistBufferlistsCoapleate . Prrid
.22 x220 BoczivoletBufferlists Prrid

1

|

EEEEDG ﬁﬁd-l'ﬂ?ﬂ

e0AZ07a0 E:.p ays”

fEERDD 60d.21]?‘

"H0d207h0 “EnumSysHodule tcpip sys failedi *
¥ 60d207da "~
EEEEIG03 60420780
3 6042070 " 1

FEEEER0D" GOJ20810

03 60420810 "OpenBlockSearchles d set-:ixB00°
03 60AI0E830

fI4ELE03 04202840

03"

03

£

yehlen d set-»0we00”

E0d20840 “tcpip base Xp TcplpenBlock %p Op®
E0d20860 “enBlockSearchlen fx. *

FEEERDT" GOdI08a0

{1803 60420880 "imit_mdis_hook =

kd: da fEEELEDY E0420820

EEfEE00% 604200ch “Enume protocol el -3 &p

.

Ln0 ColD SysKdSnes ProcO00sd Thed 0000 ASM OWE CAPS HUIM

Figure 2: Daxin checks NtBuildNumber against a set of hardcoded values for which
NDIS_OPEN_BLOCK offsets are explicitly given.
The most recent Windows build number hardcoded in Daxin’s codebase is 17763. It
corresponds to Windows Server 2019 and Windows 10 version 1809 (Redstone 5). When
the Windows build is not recognized, Daxin attempts to use an alternative method to
determine the NDIS_OPEN_BLOCK offsets.

Daxin then collects details of all NDIS structures to hook, as discussed earlier, along with
information about the related network interfaces. Finally, for each network interface, it
replaces the original handlers with its own.

5/17

J Kernad ‘netport= 50001, loey= - WinDbg HL0 23000184 AMDES - m]
Eile Edit WMiew [ebug Window Help

kd» 3 rip L14
anldT? 144082251
TEELEE03 e0d1228] 426315acif0000 wovsxd rdx dvord ptr [eaZd?P3d+0wx12204 (EEEEE803° e0d22204)]

FEEEEA03" 60412260 4o6I0SalEE0000 mowsed 18 dword prr [=add??id+0wl2200 (fEEE£E03° &0d22200)]
FEEEEANA 601225 AcldldsaffO0o0l Les il [=add?734+0xl2210 (SEE££803 60d22210}]
FEEEEAND 60412266 4cBdlSAfE2EE6E lea i, [Eﬂ&d.'-'?ﬂ*-ﬂnl-‘b: CEEEEESENT E0d1l14bs]]
fEEL1E03 E0A1276d 498h4308 e rax, quord ptr Er
SEELTONY C041357F 4o0M00M0fa¢EEE Tom rgt[mgﬁﬁiru I{égl tlista0 soa11sbey] Overwritina oriainal handlers
ol 4 - 9, [=a w0 4 : h)

FEEE£EA03 6041227 A4c@90c02 ey geord ptr [rdw+rex].rd g g a
FEEEEANI E0A1ZZE0 496b4308 o rax, quord ptr [cll+8 &
HEEE1B03 60412784 dcBd0dSdEntidd Lea rq_|2.3d'.|:§uu£1zsa gtlutsna'auan:es” (gr&en rectangIES} wrth
FEEEFA03 0412280 4499000 oy quord ptr [r@+rax], zY
FEEEEA03 60412286 4982704000 CRp gword ptr [rii+d0k].0 HP
SEEEEANG G01Z29 7409 = eeid 7T IAIRZEAE (FEEEERO GDA1229E) malicious hooks [rEd
FEEEERDI 6012296 4cEIAbEOOOODD mow gqevord ptr [rex+088h].rl0
feEfE03 E0d1229d mbib K| wasd 7734405 0a (FEELEE03 6041 22aa)
FEEEER03 e0d1229¢ 498b4310 lcrﬁ rax quord ptr [Ell+llhk] rECtangleEJ
FEELEANI 60412281 4c@99090020000 mow gqword ptr [reax+290k]).rl0
FEELEAND G0d122ma ddiblb Oy rll qword ptr [rill
FEEEEANG EOA127ad AdE5db bt rll.xll
(1411803 60412200 7500 o wa3d 7T 3400x226d (L4E0E503 6041226}

> t

= 3d 7T I A+ 02 258
FEEEEA03 604122560 AcGI0SalEE0000 mowssmd r8.dword pir [esdd??34+0x12200 (f£EE£803°&60422200)]
oa3d 7T 14002 251
PEELIB03 60412250 4cfdldaat (0000 Lea 11, [ma3d? 73440812210 (4EE0LB03° 60d22210)]
e 3dTI 4+ 0N 266
FEEEEA03" 60412266 4oBd1S4fE2E46E Lle=a rll, [maZd?734+0x14be (fEEE£800 604d114ba)]
o Ad 7T D+l 2 26d:
FEEFEANG 60412264 498b4308 oy rax. qeord ptr [cll+8]
3077144002271
FEFEFR03 e0d12271 49dbabla o rox, quard ptr [rll+lBh]
s A 7T DA+ 0w 2 2TE:
FEEEEA03 604122756 AcBd0Q40EIEL£E Lamm 9, [=a3dd?? I+0xlfbs (EEEEEH03° 60d115ba)]
=8 3d7Y 14406227
JEEfLB03 6041227 4890202 [queord pty [rdxsrax]. r3
kdy T zd

X
rela= 0000000000000 220
kdr» dt #rew ndi=z!_HOIS_OFEN_BLOCE BeceiwsHetBufferli=ts
#0220 FecwiwellmtPuf farlists [DEEEFEA0S GA040LF0 goid tcp:lp'Fle1vuRﬂ'.B4[Iu:I.|.s'.';hoLn+D

B T e e . ——— e ———
eadd 7T deln2 280

FEEEEA0D 60412280 4%8b4300 "oy
kd» dt @rax ndi=|_MDIS_OFEN_BLOCK

rax, quord pt

+0%2 20 FecejuvelatBuf ferlists waid &0
kdx t 2
e 1A T 42 284
FEEEEA0D 6012284 4ofd0dddEDEf£E Lo 2, [=add?? 34+ 0wl 68 (EEEEEQ0D° 60411368,]
ma Ad 77 I+ 2 28b:
fEEFEAN3 60d1228b 4483000 oy gquord ptr [rE+rax].r?

kdx ¥ BB
rE=0000000000000202

kd> dt Srax :nﬂ:l.:-l HDI‘S OPEN_ EICI‘_“']C P:DtSe EIB‘uE fexlistsConpl=ge
s +0pr 20 OereffEH0I 4045250 void topip!FloendietBuiferlistChainCoepleted]
» £
an3dTT 144002281
fEEEFROD eO0d1228F 4BE3TRAOOD quord ptr [ril+dlk]]
kd: dt @rax ndis|_MDIS_OPEN_BLOCE Prot&nﬂﬁt%ff::]’.agésﬂﬂg =
40208 ProtSendiesEufferTistsConplets : [Ox void +0
k> & 2
wn3dT7? 144082294
TEEEEB03 e0d12294 T409 je eaZdPPIde0n2Z9E (fEEEE803° 60d12298)
=a 37T) 4402 296
FEEEEA03 60412296 AcBI91bA000000 mow gvord ptr [rox+0B8h].Tl0

k> dt #rex ndis! _MDIS_M_DRIVEE_ELOCK MiniporiDrivwerCharacteristiks SendMNetBuf ferListsHandler
+0%070 HinspavtDriverCharacteristics

b4

- +0x048 SendMetButferlistsHandler Tt fIEEE0T &30JabEl woid eetvsc|EndisapSenddetBufferlistz+0]
» t
b 3 7T I+ 0 2 29
FEEFERDD 60d122%d eblb inp eadd?7 34+ 0n22aa (FEEEERDT l22aa)
kel dt @red sndis! _HOIS_H_DRIVER_ETOCK H|n1pnxtnr:u¢rchhmctnruur_-& HtBul ferListsHandler
+0w0?0 HiniportDriverCharacteristics
+0x048 SepdfetBuf ferlistsHandler [M=fffffeni endiiibc] woid +0
»
4 ¥
fec>]

Figure 3. For each network interface, Daxin replaces the original handlers with its own.

Networking

Both the ReceiveNetBufferLists hook and the SendNetBufferListsHandler (or
NextSendNetBufferListsHandler) hook implement logic to inspect the network packets and
then hijack some packets before passing the remaining packets to the original handlers. The
ProtSendNetBufferListsComplete hook completes any send operation initiated by Daxin,
such that NET_BUFFER_LIST structures owned by malware are removed and deallocated
before calling the original handler.

Before describing the hooks’ implementation in detail, we will first examine a few examples
of the observed behavior in Daxin.

6/17

In the first scenario, the ReceiveNetBufferLists hook checks the data section of certain TCP
packets for predefined patterns. Any matching TCP packets are then removed from the
NetBufferLists before calling the original ReceiveNetBufferLists handler. At the same time,
for each removed TCP packet, the malicious driver sends two new packets. The first packet
is a spoofed RST TCP packet sent to the original destination, so that its recipient marks the
TCP connection as closed. The second packet is an ACK TCP packet sent to the original
source. From that point, the malicious driver maintains the TCP connection with the original
source, relying on the ReceiveNetBufferLists hook to hijack any related network packets. A
test demonstrating this scenario is illustrated in Figure 4.

717

il Captacing from vithemast (vwitch_sdenal) [m] X

Fle Edit View Ge Capture Analyre Sististic Tl eph aiy Wirelei Toals Helg

.o RE R e = JEaaam

1 B.BBORGE ba:Th: 2580

S 0 1

60 37 49791 = SBUO [STW, DOW, CWA] Beqed Winssad
G696 HHEE -+ 49791 [m, &K, EOH] SeqeR A.l:k-lld.
54 32 49731 - SBBE [M -rq-. Ack=1 Wln=262656

62 31 49791 - EBER [P] Seq=1 Ac
54 Di BERR - 4970} [F:I. HI] !Hq-l. MH 'Iﬂrhn

I:BH-ID.IT]HZ a

&b, BR1EE 18 1.
TIII!”H 8,21,

8 8.21977% 10.1 2 49791 = BEDD [ACK] Seq=9 Acks? Wins2026%6
5B, Jlsm 1@.1. 1 54 31 48791 - BRER [FIN, ACK] !.uq-9 AeksZ 'uin-el-
12 @.220184 19.2.1.2 54 JE BEBE -+ 49791 [ACK] Seq=1 Ackel8 Win=210227:

E 32 48792 « EBRE [SYH, ELH, TWR] Seqe0 Win=£42

L} ﬂﬂ - l'I!'I! ['In’ll.. Ak, FOH] Seqe=8 Ack=1 :Il
BED [ACK] Seqel Acks1 Wins2108027
12 i5?9? = BEBg L Ack=1 wWin= Zl

Fide Action Media Chpbowd ‘Veew Halp

l@\ mi B 5

(496 bits) on inter
513

face ‘Dewlce'\WPF_{AB1A2343-6BSF

¥ Data (B bytes)
Dwta: 1899117eVeTeleTe

[Length: B8]

) ¥

Jta (cata.dala), A bytes Mplgyed: 11 (100.0%) | Profle: Defedk

RHAE)

The test server accepts
each incoming TCP
connection. However,
when the client sends
the magic sequence
"\x10\x99\x11", Daxin
hijacks the connection.
When hijacking the
connection, Daxin also
disconnects the original
recipient,

]

| tatus: Running

Figure 4. The ReceiveNetBufferLists hook checks the data section of certain TCP packets for
a predefined “magic” pattern before hijacking the connection.

8/17

When generating its network traffic, Daxin uses its own code to forge network packets,
bypassing the legitimate Windows TCP/IP stack. To illustrate this, we reconfigured the
Windows TCP/IP stack to use non-standard Time to Live (TTL). Since Daxin does not
respect the updated parameter, its traffic stands out in the Wireshark capture shown in

Figure 4.

The TCP retransmissions in the Wireshark capture are due to our scripts for the kernel
debugger that slow down driver response. The retransmissions are not expected otherwise.
We decided to activate these scripts to illustrate the internal working of the driver, where we
can recognize individual packets from our Wireshark capture, as illustrated in Figure 5.

B Kemel ‘netport=S0001, key= « WinDibgr 1L 22000.154 AMDGA - o =
File Edit View D:ﬁug mm Hep
|a_ = = - T —_
kd> load ndisl -
ked» bp CLLLEB03 a0dlands " schko ®cho “"ex3 ") db i Labp, .echo S pip:n") @ !‘1]:- 10E: @e"
kd» bp EEf$E803° h0dladc? *.ecko: r rBw; .echo “rdw: " db rdw L14: echo “ rex db rcx Lrd; .echo ““rip:n*: o rip L4 go*
kd: bp Eff£EOOT 60413728 * mcho: scho ~ rde »*: db rde]'_l.lJ cmcho “frip:at: om r1:p BT go”
kd> bp Eff£ER0F 60dLII?ES *° acho ““rdw:%": db rdx L40: =c®
kd:» bp EEFFER0Z" 60411474 " echa: echo “"rdx ~". Indiskd nbl Prdz —data: eche ~"rip:~": u rip L2. ="
k>
Ml Warshait Pache B Rttt sssemal] = 0o =
T5i
iEEEiEUB EIbETalb El 62 61 7= 7e T Fe Ve mho Frome &: &1 bytes om wire (466 bite), &1 ytes cagtured (48€ bkdis) on ing
TETI103 60d1aa%5 488516 test rai P4 NSRS AR R e R R S A
fEEEEH03 eldlan%l OfB4a0000000 e EEEEER03" G0dlable Lrrinae¥ Prihecad shontmm sl Sa% Thadok ARG M LAY
FEFEFA03 G0dlante Shed tmet D, o Transmisadon Contrnl Protocel, Sec Fert: 45791, ik Rort: S53E;, Seq1 3, A&
FEELEA0D E0dlsmal Of@=32000000 il= EE£EER0T 60dlabie bl LI
FEEL£803° 60dlsaat BELOIFOOOD ey max, 9910 Bewkwn S Sy N o
JECIEB03 60d]lasal 663905 CRp word pLr Ektn] ax [Longin: ¥)
FEEEEE03" e0dlanas OfA58a000000 Jne FiffEB03 60dlable [£
fFEEffA03 el0dlanbd 2adel2 mo al byte ptr [rsisZ] - - — = - 3
fEEEEA0D G0dlmab? 3ol oap al.10h et s o o L cre
EEEEE:E; Eﬁq‘}ﬂﬂgﬁh 3"‘2; je ngﬁgm. b0dlaabi A3 GF < M 32 68 §7 79 du A1 73 b5 Je Js SO 10 N HP
PLAMELE o =T ¥ & L &2 &) Te 7= e 7 0
fEEfE803 e0dlankd TEIE 'jnl.; fiftE803° aldlable = bl '
FEEE£803" c0dlanbi A2OBC42460 By rdl: quord ptr [rsp+ilh]
FEEL£A0D" G0dlsacd 488b4c2AbR RO x.qeord ptr [rsprébh]
FEELEB0D G0dleacd efBaf3fiEE call EEi!’!BDS 60dLadsE L2
IEl "—\.\
fEFE£803 6IBSEAdE 10 99 11 Te Te 7= Te 7e g Nk e A e it — o0 &
Tip -
fEEEEA0I 60dlends 45A5(6 test TSl sl
LA rH:g' Eldlaa%h '.'lé:l:llulll'.ll'l|'||1I:I|.7I ia [IEEEB03" 60dlab3e ;""H‘ 141 & WTH 00 wlrE (“L““.l. &2 bytes 3“11“'“ (49 bivs) o8 Iy
fEEEFRNY eldlaade 2 test abp, abp thereet 1E, Src: b? 72, Dat: Oa18: 5113
FEELE002 c0dlanal Of@=02000000 il= tE££EB0Y G0dlable Inteceat Protocal Werilon d, Sre: 18.1.1.1, But: 18.2.2.7
FEELEA0D" G0dlsmat bELOVIOOOD o eax, 9910k Tranemizeisn Lontrol Protocsl, Scc Boct: 40792, Dot Port: SEBE, Seg: 1, &
fEELEANT 60dlamab &63905 =2 5] word ptr [rsi]_ex = Datw (0 bybes)
SEEEERNT G0d]lamam OfB584000000 jne tE1{EB03 EDdlable {1} Checks eThl INLITeTE TR
fEEEEE03 E0dlaabd Sadk02 P n n r.- prr [rmie?] [Lesgthi &]
FEEfER03 e0dlaab? 2o10 CEpP H
FEEEER0D Gldiamb) T404 j= $1:££803" 60dLaabe for magic - = 2
EEELiBN3 endiaatd TErt Tee Fifts0s soaiabse R I T A
deEftB03 e0dlaabi ASABS42460 (=11 rde, quord pty [rapebib] SEqUEﬂCE Bl 83 02 B8 I3 b8 b To ol BT Bd 0T Sb i S8 08 N Fo-p
FEEE£R03 cldlancd 4%8b4c2dER By rox, quord ptr Er:m—l’:gh] BE 36 M 1T 15 08 o - —
FEELE00D C0dlaact eBBafIfiEE call EffiEBl:I3 bldilad58
rhvz0 e
ydw
fEELfB03 c3boidae 45 02 00 30 92 73 40 00-20 06 bl 4d Oa 01 01 01 E. .0.s#. H.
fEEEfA0D" €dbSfdbe = 02 02 02 ¥
TCK
FEEFEBN3 EILSEdel 2 B0 22 bE Bb f 4 07-b4 37 % 8 50 18 20 14 ¥ 7. £ =1 1
TR R - R - v (2) Modifies IP packet size and
rip B ¥ .
FEELEB0D G0d1adal E6dlciclll ol v, B
ELIios Shdoey CeMTaSl mw revd ir [xdes2).siy TCP flags of incoming packet
FEEEERDD 60dladce SOGL0AET and byte ptr [rox+0Db). 0F7h
fEEf1B03 E0dla3dl 20490014 or byte ptr [roxe0Dh]. 14k tD spoof RST TCP packet
rdx .
Falosd ndis sve
i ssCcEmded
NET_BUFFER L{f{ddBf0ecaSill
DL bl [« 3] =¥l
Ellfﬁdﬂiﬂﬁuﬂ’]ﬂﬂ 00 15 5d 60 1Ib 13 [l[l 15-5d 60 1b 13 05 00 45 02 117 I E (3) SendS the spoofed
[PEf2ABE0See1b0 00 28 92 73 40 00 D=kl 55 Om 01 O1 01 0w 02 [= r -
ft!fBﬂB!ﬂ%ne?ll:El 02 02 ci BO X2 b& Bb fo=cd 0F b4 37 9b cB G0 14 : TP
. PEEEBABE0Se=T1d0 20 14 £3 79 00 0O ¥ RST TCP pack-et USlng
Tip - -
FEEEEBDZ 60411474 56 wah
dELIIB03 6011475 wE448403200 gil] f?t!!!ﬂB'ﬁDdEuM . NdlssendNEtBuﬁerListS{}
rdx
fEEL£A03° 6IbSEcOd 00 00 00 OO OO0 00 0O O0-00 DO OO0 00 0D Q0 0D 00
fEEEEB03° 63bSEcld 00D 00 00 OO 22 b ci BO0-b4 37 9b cd Bb [l: cd 0 - T
JEFIIB03 63bSEc2 50 10 OO0 £ OO0 OO 00 OD-00 OO0 OO OO OO 0o oo P
fEE£803" e3b5ic3d 00 00 00 OO 00 OO0 OO OO-00 00 00 00 00 l:'lt 0o oo
Tip
FEELEA0D" E041372d cEO24E ov bets ptr [rdx].dSk
FEEEFEBDI 60413730 4486201 Al byte ptr [rds+l].rlb
JEE1IBN3 e0d13734 410EBEA43B4E WEUER wax byte piy [eBaydisdEh]
FEEEEB03 c0d1373a 2034714 add ax, word ptr [zdisldh]
FEELEBA02 60d13Tde SEd4BIE206 oV vord ptr [rdet+é], rliw
FEELEA03 60413740 cEd20asD oy byte ptr [rde+8]. 800
FEEFERDD GOA137A7 &6EIcOLA add ax. Ldh
JECIIB03 6041374 &eclclOD Tal ax, 8
i:“igﬂgzgﬂggg ggggﬁégg aoonn il iyl [mti If fE003" 60d22110]
= BOVER e, ptr 1
FEELEA02" E041376s DfbPci ROUZIX = BCK.SK { } Il 5
FEEFEA03 60413754 E6fEch inc ax 4 Cra an ACK TCP
JECIIEN3 6013760 S6B905a3w30000 i et P42 803 60422110 i
HHEHE Rt -+ S Ll L narket ta keen the hiiarked

13" E0d1376h 20420540 Ll L 4

03" E041376E &EAT4mld
013 60413773 Badd58
N3 60413776 SE4209
03" 0413799 2h4350
03 €0d1377c 894210

T byte ptr [rde+b], 40h !
g

[

B

g

a

@03 6041377 Bb43EL
8

g

g

8

[

word pt de+d] .o H
a?_byt,‘pE.ij’f,gi_s?“h| ."l connection open
byta ptr [rdz+9].a

L] d'un:rd.[:tr [ebix+50k] |

deord ptr [rdw+llk], sacx ‘

38

135EES

max, dvord ptr [rba+b6dhk]

13" 60137 BZ 89420 dword ptr [rdu+iCh].eex

[& 03" edbSicOY 45 00 00 28 26 be 40 00=-S0 0& OO0 00 Oa OF 02 02 E. . (& @
H 03" e3bSfold fa 01 01 01 22 bé c2 BO-bd 37 %b c2 8b fc c4 O = 7
liE 03" &Ibsfc2® S0 10 00 £f 00 00 OO O0-00 OO OO0 0O 00 OO DO OO0 P
; 03" 63b5fc3 00 00 00 OO OO Q0 OO O0-00 0O OO0 OO 00 DO DD 00
feds _"\I

\HET_BUFFER :fffodp ";I.".'.:_=.'
| HiL Lu_hh.;u_»

(TEE1£807 60411474 56 push rei USlng NdlSSendNetBUﬁerLFStS(}
fEFEEANI RO411475 544840200 all FFFIEBO3 aldZaake

e R el he et b L AN S
if :sga: JE: :ItLL 01 u1 zf’ bi c? BO b4 37 _':I_ ch s; L= L; OE =0 10 >’[5 SendE thE‘ ACK TCP paCkEt
. ffffBdAE0Se=l1d0 00 £€ 12 Bb 00 0O |.

il Wireshasi . Pache vEthrrtt. (evinch et - o

)
|#BUSYs Dmbugges iz Tunnins
1 r-el:l.'.q_-;.u-hn.. 407 bt Jhn,-s sptared (432 bits) os [8
Erharest 1E, Srci 88 duu'_l.1il pEr Iy 7T
T ot Pa T, Seq: 1, A
s

I

Figure 5. By capturing individual packets, we can illustrate the internal working of Daxin.

In another scenario, Daxin initiates a new TCP connection and maintains it over the whole
lifetime of the TCP session. The malware relies on the ReceiveNetBufferLists hook to hijack
any network packets related to this connection. The hijacked packets do not reach the
legitimate Windows TCP/IP driver. An example TCP connection initiated by the malicious
driver will be discussed later in this blog series.

In the last scenario, Daxin sends a DNS request using the UDP protocol. The response UDP
packet is hijacked by the ReceiveNetBufferLists hook and the DNS response is parsed by
the malicious driver. We exercised this functionality in our lab when exploring configuration
options related to command-and-control connectivity.

The described scenarios indicate that Daxin implements its own TCP/IP stack. This was
confirmed with further reverse engineering of the driver, where we identified both data
structures and subroutines implementing IPv4, TCP, and UDP.

The main purpose of the NDIS hooks installed by Daxin is to allow for its malicious TCP/IP
stack to coexist with the legitimate Windows TCP/IP stack on the same machine. When
certain conditions are met, the hooks also allow it to hijack pre-existing TCP connections.

The ReceiveNetBufferLists hook checks the NbIFlags member of the NET BUFFER _LIST
structure at the head of its NetBufferLists argument for the

NDIS _NBL _FLAGS IS LOOPBACK _PACKET flag. Whenever the flag is set, the hook
simply passes the network data to the original ReceiveNetBufferLists handler with no other
processing. Otherwise, it calls a helper subroutine passing the NetBufferLists linked list of
NET_BUFFER _LISTs. The helper subroutine divides the original linked list of
NET_BUFFER_LISTs into two chains: one chain of allowed packets for further processing by
the legitimate stack and another chain of hijacked packets to drop. The hook then passes the

10/17

chain of allowed packets to the original ReceiveNetBufferLists handler. Next, if the
NDIS RECEIVE FLAGS RESOURCES flag is not set in its ReceiveFlags argument, the
hook releases ownership of the chain of hijacked packets using NdisReturnNetBufferLists().

The SendNetBufferListsHandler hook checks if the NdisPoolHandle member of the
NET_BUFFER_LIST structure, passed as its NetBufferList argument, corresponds to the
pool created by Daxin itself to use when sending malicious traffic. If so, the hook simply
passes the network data to the original SendNetBufferListsHandler with no other processing.
Otherwise, it calls the same helper subroutine as used by the ReceiveNetBufferLists hook to
divide its NetBufferList argument into two chains. It then passes the chain of allowed packets
to the original SendNetBufferListsHandler. Finally, the chain of hijacked packets is retired
using the NdisMSendNetBufferListsComplete() or ProtSendNetBufferlListsComplete handler.

The helper subroutine used by both hooks walks the original linked list of
NET_BUFFER_LISTs extracting network packets from each visited NET_BUFFER_LIST
structure and calling the malicious packet filter for each extracted packet. The verdict
returned by the packet filter for the first packet from the visited NET_BUFFER_LIST structure
determines if the structure should be allowed for further processing by the legitimate stack or
dropped by the hook.

The packet filter is central to the networking capabilities of Daxin as it controls dispatching of
the extracted packets to various Daxin's sub-modules, where each sub-module implements
different functionality. The filter returns an “accept” or “drop” verdict to indicate if relevant
packets should reach the legitimate TCP/IP stack or not. It operates as follows:

1. Checks if the packet is related to any of the network flows from the malicious network
tunnel. If so, it captures the packet for forwarding to the remote attacker via an
encrypted channel and returns with a “drop” verdict.

2. Checks if the Ethernet source and destination MAC addresses are equal. If so, it
returns with an “accept” verdict.

3. In cases where it was called from the ReceiveNetBufferLists hook, it checks if the
Ethernet source MAC address corresponds to any of the network interfaces of the local
machine. If so, it returns with an “accept” verdict.

4. In cases of TCP over IPv4 packets, it tracks certain parameters of an active TCP
connection for use by TCP hijacking logic in the future (if needed).

5. In cases of non-IPv4 packets or when called from the ReceiveNetBufferLists hook, it
calls each handler from the list of Daxin’s packet handlers, stopping on the first handler
that claims ownership of the packet. Whenever Daxin’s handler claims ownership on
the IPv4 packet, the filter returns with a “drop” verdict.

11/17

These Daxin packet handlers are dynamically registered and unregistered by the
malicious TCP/IP stack as required, minimizing the overhead. Furthermore, in case of
TCP, the list of handlers is bucketed by the server port (which supports TCP servers
listening for new connections) or the combination of client and server ports (which
supports TCP sessions). The packet is parsed before calling handlers and the parser
logic limits the combination of supported protocols to ARP, UDP over IPv4, and TCP
over IPv4.

1. In cases of TCP over IPv4 packets when called from the ReceiveNetBufferLists hook, it
checks that the TCP data in the packet:
o Starts with the string “POST” and contains the string “756981520337” without any
line break “\r\n” in-between, or
o Starts with the sequence of bytes 0x10 0x99 0x10 and is at least eight-bytes long,
or
o Starts with the sequence of bytes 0x10 0x99 0x11 and is at least eight-bytes long

When a match is found, it triggers hijacking of the related TCP connection and returns
with a “drop” verdict. It should be noted that these checks are not limited to the start of
the TCP conversation, and so it is possible to trigger hijacking after exchanging an
arbitrary amount of data. This provides the option to start communication with the
malicious driver at the end of a long conversation with a legitimate server hosted on the
infected computer.

Finally, the ProtSendNetBufferListsComplete hook walks the list of NET_BUFFER_LIST
structures passed as its second argument checking if the NdisPoolHandle member of the
visited NET_BUFFER_LIST structure corresponds to the pool created by the malicious driver
itself to use when sending malicious traffic. The matching structures are removed from the
list and, after validating the Flags member, deallocated. The hook then passes the modified
list to the original ProtSendNetBufferlListsComplete handler.

A technical paper by Kaspersky on the Slingshot advanced persistent threat (APT) group
describes a technique to identify NET_BUFFER_LIST that is very similar to how the
ProtSendNetBufferListsComplete hook works, including the use of
NdisAllocateNetBufferListPool() and NdisAllocateNetBufferAndNetBufferList(). However,
there are no other significant structural overlaps.

Key exchange

Whenever Daxin hijacks a TCP connection, it checks the received data for a specific
message. The expected message initiates a custom key exchange, where two peers follow
complementary steps. When discussing this key exchange protocol, we are going to use the
term “initiator” when referring to the side sending the initial message. The opposite side will
be called “target”. Interestingly, the analyzed sample can implement both the initiator side
and the target side of this custom key exchange protocol.

12/17

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/09133534/The-Slingshot-APT_report_ENG_final.pdf

Firstly, Daxin starts the target-side protocol for each hijacked TCP connection. Additionally, it
can be configured to connect to a remote TCP server, where it exchanges a certain
handshake and then also starts the target-side protocol. This scenario will be discussed in
our next blog in this series in a section titled “External communication.” Finally, Daxin can be
instructed to connect to a remote TCP server, where it starts the initiator-side protocol. We
will expand on this in the next section.

Backdoor capabilities

A successful key exchange opens an encrypted communication channel. Daxin uses this
communication channel to exchange various messages. Some messages instruct the
malware to perform various operations, such as starting an arbitrary process on the affected
computer. Others carry results of these operations, such as output generated by the started
process, for example. The set of operations recognized by Daxin is rather compact, with the
most basic operations being reading and writing arbitrary files.

Daxin can also execute arbitrary EXE and DLL binaries. In the case of EXE files, Daxin starts
a new user-mode process. The standard input and output of the started process is
redirected, so that the remote attacker can interactively send input and receive output. When
ordered to execute a DLL file, Daxin performs injection into one of the pre-existing
“svchost.exe” processes.

Daxin provides a dedicated communication mechanism for any additional components
deployed by the attacker on the affected computer. Any compatible component can open a
“\.\Tcp4” device created by Daxin to register itself for communication, where it can optionally
assign a 32-bit service identifier to distinguish itself from other services that may be active on
the same computer. Daxin then forwards any matching communication between the remote
attacker and registered services.

Next, the remote attacker can inspect and update the backdoor configuration. The
configuration is implemented as a generic key-value structure that is stored in an encrypted
form in the Windows Registry for persistence. All used configuration items will be listed in the
“External communication” section in a subsequent blog.

There are also dedicated messages that encapsulate raw network packets to be transmitted
via a local network adapter. Any response packets are then captured by the malicious driver
and forwarded to the remote attacker. This allows the remote attacker to establish
communications with any servers reachable from the affected machine on the target’s
network, creating a network tunnel for the remote attacker to interact with servers of interest.

Finally, a special message can be used to set up new connectivity across multiple malicious
nodes, where the list of nodes is included in a single command. For each node, the message
provides the details required to establish communication, specifically the node IP address, its
TCP port number, and the credentials to use during custom key exchange. When Daxin

13/17

receives this message, it picks the next node from the list. Then it uses its malicious TCP/IP
stack to connect to the TCP server listed in the picked entry. Once connected, Daxin starts
the initiator-side protocol. On the peer computer, if it is infected with a copy of Daxin, the
initiator traffic causes the TCP connection to be hijacked, as explained earlier. This is
followed by the custom key exchange to open a new encrypted communication channel.
Next, the connecting driver sends an updated copy of the original message over this new
channel, where the position of the next node to use is incremented. The process then
repeats for the remaining nodes on the list.

The TCP connections created during the above process, along with the connection that
received the original connectivity setup instruction are then used for subsequent
communications. Whenever an intermediate node receives a message, it may execute the
requested operation or forward it along the connectivity path. For certain operations, the
node to execute the operation is specified by the position along the path. In some remaining
cases, the operation is always forwarded to the last node. Finally, certain operations are
always executed by the first node only.

This method to create multi-hop connectivity is noteworthy. It is not uncommon for the
attackers to jump through multiple hops in victim networks to get around firewalls or to better
blend in with usual network traffic. This usually involves multiple steps when using other
malware, where each jump requires a separate action. However, in the case of the analyzed
sample, the attackers combined these into a single operation. This may indicate that Daxin is
optimized for attacks against well-protected networks and cases when the attackers need to
periodically reconnect into the compromised network.

The ability to use hijacked TCP connections for backdoor communications is also significant.
This may be required when exploiting tightly controlled networks, with strict firewall rules or
when the defenders monitor for network anomalies. On the infected machine, any malicious
network connections are bypassing the Windows TCP/IP stack, and this could provide some
degree of stealth. The attackers invested significant effort in implementing these features
with a malicious TCP/IP stack supporting TCP connection hijacking.

The implementation of network tunneling, where the malicious driver passes the packets
directly between the remote attacker and the target’s network demonstrates how the
attackers attempt to minimize their footprint without sacrificing functionality.

Backdoor demonstration

In order to demonstrate Daxin’s backdoor capabilities, we prepared a lab setup to both
illustrate what was described in the previous section and also to collect some examples of
malicious network traffic to discuss later.

14/17

Our lab setup consisted of four separate networks and five machines. Some of the machines
had two network interfaces to communicate with different networks, but all packet forwarding
functionality was disabled. Each machine ran various network services that were reachable

from its neighbors only.

o

Attacker \

C'EEX

Bob-PC
Charlie-PC
Clean-PC Dave-PC

Figure 6. Test setup to illustrate Daxin’s backdoor capabilities.

In our setup, the attackers can communicate with “Alice-PC”, while all of the other machines
are unreachable directly to the attackers. This simulates the network of a hypothetical victim,
where machines serving different roles have very restrictive connectivity. “Alice-PC” could
represent a DMZ service that is accessible from the internet, but all the other machines are

tightly isolated.

15/17

We infected all of the configured machines with Daxin, except for just one machine deep in
our network that was left clean. Next, based on our understanding of the malicious
communications protocol gained during reverse engineering of the malicious driver, we
implemented a rough client to interact with the Daxin backdoor running on “Alice-PC”. We
used this client to instruct the backdoor on “Alice-PC” to create a communications channel to
“Dave-PC” passing via two intermediate nodes: “Bob-PC” and “Charlie-PC”. The connectivity
was established successfully, and we were able to interact with all the infected machines.
Finally, we were able to use this malicious network tunnel via “Dave-PC” to communicate
with legitimate services on “Clean-PC”.

Conclusion

This concludes the first part of our technical analysis of Daxin. In our second, and final blog,
we will examine the communications and networking features of the malware.

l».BroadcomSymantec Enterprise Blogs
You might also enjoy

Threat Intelligence9 Min Read

Daxin: Stealthy Backdoor Designed for Attacks Against Hardened
Networks

Espionage tool is the most advanced piece of malware Symantec
researchers have seen from China-linked actors.

About the Author

16/17

http://10.10.0.46/blogs/threat-intelligence/daxin-backdoor-espionage
http://10.10.0.46/blogs/threat-intelligence/daxin-backdoor-espionage

Threat Hunter Team

Symantec

The Threat Hunter Team is a group of security experts within Symantec whose mission is to
investigate targeted attacks, drive enhanced protection in Symantec products, and offer
analysis that helps customers respond to attacks.

Want to comment on this post?

17/17

