HermeticWiper: A detailed analysis of the destructive
malware that targeted Ukraine

blog.malwarebytes.com/threat-intelligence/2022/03/hermeticwiper-a-detailed-analysis-of-the-destructive-malware-that-
targeted-ukraine/

Threat Intelligence Team March 4, 2022

This blog post was authored by Hasherezade, Ankur Saini and Roberto Santos

Disk wipers are one particular type of malware often used against Ukraine. The
implementation and quality of those wipers vary, and may suggest different hired developers.

The day before the invasion on Ukraine by Russian forces on February 24, a new data wiper
was found to be unleashed against a number of Ukrainian entities. This malware was given
the name “HermeticWiper” based on a stolen digital certificate from a company called
Hermetica Digital Ltd.

This wiper is remarkable for its ability to bypass Windows security features and gain write
access to many low-level data-structures on the disk. In addition, the attackers wanted to
fragment files on disk and overwrite them to make recovery impossible.

1/37

https://blog.malwarebytes.com/threat-intelligence/2022/03/hermeticwiper-a-detailed-analysis-of-the-destructive-malware-that-targeted-ukraine/
https://twitter.com/ESETresearch/status/1496581903205511181?s=20&t=5Zz6kStjdzGh2bRaH32DCA

As we were analyzing this data wiper, other research has come out detailing additional
components were used in this campaign, including a worm and typical ransomware
thankfully poorly implemented and decryptable.

We obtained samples and in this post we will take apart this new malware.

Behavioral analysis

First, what we see is a 32 bit Windows executable with an icon resembling a gift. It is not a
cynical joke of the attackers, but just a standard icon for a Visual Studio GUI project.

q

| Icon used by HermeticWiper

cl.exe

It has to be run as Administrator in order to work, and does not involve any UAC bypass
techniques. As we will later find out, the name of the sample also (slightly) affects its
functionality; if the name starts with “c” (or “C”, as it is automatically converted to lowercase)
the system will also reboot after execution.

Once run, the sample works silently in the background. For several minutes we may not
notice anything suspicious.

Only if we watch the sample using tools like Process Explorer, we can notice some unusual
actions. It calls various IOCTLSs, related to retrieving details about the disks:

18:45:... ff Tbcddesf75779... 3284 E¥Requenkey HKLM SUCCESS Guery: Name
18:45:.. m Tbcddeef75775... 3284 ﬁRegOpenKey HKLM%SYSTEM \CumrentControlSet services =rdr REPARSE Desired Access: Delete
1845 ﬁ Tbcddeef75779... 3284 ﬁREgOpenKey HKLM*System“CumentControlSetservices ardr SUCCESS Desired Access: Delete
18:45:... m Tbcddeef/5779... 3284 ﬁRegSeﬂrrfoKey HKLM"System“\CumentControlSet" Services'ardr SUCCESS KeySetinformationClass: KeySetHandle Tagsinformation, Length: 0
18:45: ﬁ 1bcddesf75775.. 3284 @ERegDelstekey HKLM\System'\CumertControlSet' Services'ardr SUCCESS
18:45:.. ﬁ Tbcddeef75779... 3284 ﬁﬂeg[ﬂcseKﬁy HKLM"System“\CumrertContralSet Services'wrdr SUCCESS
1845 ﬁ Tbcddeef75779... 3284 L:}CreateFile CAWindows"\System32 drivers'ourdr sys SUCCESS Desired Access: Generic Read, Dispostion: Open, Options: Synchronous 1O Nor
18:45:... ff Tbcddesf75779... 3284 Bk CreateFile C:\Users\tester'\Desktop SUCCESS Desired Access: Synchronize, Disposition: Open, Options: Directory, Synchronou
18:45:... m Tbcddeef75779... 3284 E}QuerySizelnfor... C\Users\tester'Desktop SUCCESS TotalAllocationUnits: 17 130 751, AvailableAllocationUnits: & 133 376, SectorsPe
18:45:.. ﬁ Tbcddeef75779... 3284 L:}n[loseFile C:\Users\tester\Desktop SUCCESS
18:45:... m Tbcddeef/5779... 3284 L:}Createﬁle C: SUCCESS Desired Access: Generic Read/White, Disposttion: Open, Options: Synchronous
18:45.... [Tbcd4eef75779.. 3284 BhDeviceloCortrol C: SUCCESS Control: IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS
18:45.... [1bcd4eef75779.. 3284 Sk FileSystemControl C:\Windows\System32'drivers urdr sys SUCCESS Control: FSCTL_GET_RETRIEVAL_POINTERS
1845 ﬁWbcMeef?ﬁ??B... 3284 L:}CloseFiIe CAWindows"\System32 drivers'ourdr sys SUCCESS
18:45.... ff 1bcd4eef75779.. 3284 BhCloseFie C: SUCCESS
18:45:... m Tbcddeef75779... 3284 El[:reateFile C:AWindows"System32'drivers'wrdr sys SUCCESS Desired Access: Read Attributes, Delete, Disposition: Open, Options: Non-Direct:
18:45; ... 3284 L:}nQueryPﬂributeT ..CA\Windows\System32'\drivers'«rdr sys SUCCESS Mtributes: A, Reparse Tag: (0
X ... C\Windows"\System32\drivers'ardr.sys SUCCESS
18:45:... ff Tbcddesf75779.. 3284 ZhCloseFie C:AWindows"\System32'drivers'wrdr sys SUCCESS
18:45:.. m Tbcddeef75775... 3284 E}CreateFile CAWindows"\System32\drivers'urdr SUCCESS Desired Access: Read Attributes, Delete, Disposition: Open, Options: Mon-Direct
1845 ﬁ Tbcddeef75779... 3284 E:}Queryﬁd‘mbuleT .CAWindows"\System 32 drivers'ordr SUCCESS Attributes: A, Reparse Tag: [0
18:45:... ff bcddesf75779... 3284 L:}SetDispos’rtionl... CAWindows"\System32\drivers wrdr SUCCESS Delete: True
18:45- . /i 1bcddeef75779 . 3284 A CloseFie C\Windows"\System32\drivers'wrdr SUCCESS

Example of actions performed by HermeticWiper, seen in ProcessMonitor
...including ESCTL GET RETRIEVAL POINTERS and ESCTL MOVE FILE which can remind
of files defragmentation*.

[*] Note, that at the low-level, files may not be kept in a filesystem in one continuous chunk
(as we see them at high-level), but in multiple chunks, stored in the various sectors of the
disk. Defragmentation is related to consolidating those chunks, and fragmentation — to
splitting them.

2/37

https://www.welivesecurity.com/2022/03/01/isaacwiper-hermeticwizard-wiper-worm-targeting-ukraine/
https://www.crowdstrike.com/blog/how-to-decrypt-the-partyticket-ransomware-targeting-ukraine/
https://samples.vx-underground.org/APTs/2022/2022.02.23(2)/Samples/
https://blog.malwarebytes.com/wp-content/uploads/2022/03/create_and_delete.png
https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_get_retrieval_pointers
https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_move_file
https://docs.microsoft.com/en-us/windows/win32/fileio/defragmenting-files

19:45.. ffj1bcddesi75779.. 3284 EACQuenDirectory C:\Users\tester\Desktop'hh32_mingw\Chakefiles SUCCESS 0: ., 1: 3.11.0, 2 cmake check_cache, 3: CMakeDirectorylnformation cmaks, 4: Chlzke

18:45:... B 1bcddesf75779... 3284 BCreateF\le C:\Users'tester\Desktop‘hh32_mingw\CMakeFiles'3.11.0 SUCCESS Desired Access: Read Data/List Directory, Synchronize, Dispostion: Open, Options: Direc.
18:45.... B Ibcddesf75779... 3284 ShQuenyDirectory C:\Users'tester\ Deskiophh32_mingw'CMakeFilest3.11.0 SUCCESS Fiter: =, 1: .

18:45.. B Ibcddecf75779.. 3284 BhQuenyDirectory C:\Users'tester\Deskiop\hh32_mingw\CMakeFiles'3.11.0 SUCCESS 0: .., 1: CMakeCCompiler cmake, 2: CMakeCXXCompiler cmake, 3: CMakeDetermineCom
18:45:. [Ibcddesf75779.. 3284 BACreatefile C:\Users'tester\Desktopthh32_mingw\CMakeFiles'3.11. 0\CMakeCCompiler cmake SUCCESS Desired Access: Generic Read, Write Data/Add File, Disposition: Open, Options: Synchro
18:45. [bod4esf 75779 3284 =k FileSystemControlC-\Users'tester\ Dasktop\hh32_mingw\CMakeFiles\3.11 I\CMakeCCompiler cmake SUCCESS Control: FSCTL_GET_RETRIEVAL_POINTERS

19:45:... B 1bcddesf75779... 3224 BCIuseFile C:\Users'tester\Desktop“hh32_mingw\CMakeFiles3.11.08CMakeCCompiler cmake SUCCESS

18:45.... B Ibcddesf75779... 3284 k. CreateFile C\Users'tester\Desktop®hh32_mingw'\CMakeFilest3.11.0\CMakeCXXCompiler.cmake SUCCESS Desired Access: Generic Read, Write Data/Add File, Disposition: Open, Options: Synchro...
18:45.. B Ibcddecf75779.. 3284 2k FileSystemControl C:\Users\tester\ Deskiop'hhi32_mingw\CMakeFiles'3.11. 0\CMakeCXXCompiler.cmake SUCCESS Corttrol: FSCTL_GET_RETRIEVAL_POINTERS

18:45:.. [Tbc4desf75779.. 3284 A ClossFie C:\Users'tester\Desktop'hh32_mingw\CMakeFiles'3.11. 0\CMakeCXXCompiler cmake SUCCESS

18:45... ﬁ 1bc4deef 75779... 3284 BCreateFle C:\Users'tester\Desktop‘hh32_mingw\CMakeFiles'3.11.0NCMake DetermineCompilerABI_C bin SUCCESS Desired Access: Generic Read, Write Data/Add File, Disposition: Open, Options: Synchra...
19:45:... B 1bcddesf75779... 3224 BFIeSystemContrelC\Users\tesler\Des}dop\hhlZ mingw\CMakeFiles\3.11.0\CMake DetermineCompilerABI_C bin SUCCESS Control: FSCTL_GET_RETRIEVAL_PCINTERS

18:45... E1bc44ee\‘75779.. 3234 BFIeSystemCuntmlC SUCCESS Corttrol: FSCTL_MOVE_FILE

However, further examination has shown that the effect here is the opposite of
defragmentation. In fact, the data gets more fragmented as a result of the malware
execution.

The disk status regarding data fragmentation, before and after the malware execution, can
be checked in the following images:

@ Defraggler - a X
Action Settings Help

Drive Media Type Capadty Used Free Space Fragmentation Status

‘& Local Disk (C:) SSD (NTFS) 59.5GB 43.8 GB (74%) 15.7 GB (26%) 8% Calculating Disk Performance ...
< >

i, DiveC: | Fielist J Search oy Drivemap |l Statistics
[Fiename Fragments " size Type Last modified Path =
O LibreOffice_7.2.5_Win_x64.msi 2 333,032KB Windows Install... 1/20/20229:13... C:\Users'user\Downloads\
g 200MB.zip 291 204,800KB Compressed (zi... 3/1/2022 12:10... C:\Users\user\Downloads\
Disk status before fragmentation
@ Defraggler - O X
Action Settings Help
Drive Media Type Capadity Used Free Space Fragmentation Status
‘i Local Disk (C:) SSD (NTFS) 59.5GB 43.8 GB (74%) 15.6 GB (26%) 20% Analysis Complete
< >

i Drive C: Flelist) Search @y Drivemap |l Statistics

O Fiename Fragments " Size Type Last modified Path N
O LibreOffice_7.2.5_Win_x64.msi 12072 333,032KB Windows Install... 1/20/2022 9:13... C:\Users\user\Downloads\
200MB. zip 7144 204,800KB Compressed (zi... 3/1/2022 12:10... C:\Users\user\Downloads\

Disk status after fragmentation

3/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/ioctls_content.png

This is probably made in order to escalate the created damage: the more fragmented the file
is, the more difficult it is to carve it out from the raw disk image, and reconstruct it
forensically.

As the execution progresses, at some point, we may realize that some applications stopped
working. It is because of the fact that some files, including system DLLs, have been
overwritten with random data.

Example: an application failed to run because of a system DLL being trashed:

Launcher: xX96dbg.exe - Bad Image E

% CAWindows\SYSTEM3IZWSHDOCVW.dIl is either not designed to run on
@ Windows or it contains an error. Try installing the program again using
the original installation media or contact your system administrator or Example of an error
the software vendor for support. Error status CecQ0001 2f,

0K

caused by the wiper
If we now view the raw image of the disk (i.e. using HxD), we can notice that some sectors
have been also overwritten with random data:

g Untitled (C)

offset({nh) 00 01 02 03 04 05 06 0T 08 09 OA OB OC OD OE OF Decoded text
0000000000 FE CC 20 1D EO B2 T4 A3 B6 &0 78 36 B4 39 5C 19 tE .f,tE9mx6"9%. Sector O
0000000010 90 CF D3 ES 06 BE1 35 BF 4C 7F B3 74 35 20 21 2% ,DO&.#52L..t5 !)
0000000020 69 52 B3 92 30 F1 33 6F 9C SE 58 F1 20 67 C2 0D 4iR.'0A303ZXA oci.
0000000030 82 S0 CB BO 28 D4 21 85 95 BEE 71 CE 70 BEC BRE RE ,]1€° (6! »sgipres
0000000040 ES 49 3B 27 CC 31 21 24 BE FL 4E B2 38 61 7D 42 iT:'E1!,.70N 8alB
0000000050 51 85 20 4F E2 E7 2D DE 77 C6 42 DO EC 70 AO 25 Q.. Qdc-UwCBDEp ..
0000000060 58 20 17 48 RO 27 16 &4 80 BE 87 55 5B DO BB 298 XE.K '.dEI-U[B..
0000000070 FA 14 93 65 E4 74 BE 12 26 2F 78 ED 41 46 94 F5 1. hit, .&/xiRF34
0000000080 FC 4C OF AR DD 16 1C 34 40 46 BC FD A9 51 A6 72 #HL.5Y..4@FLyexir
0000000090 11 =4 79 CD 45 94 FC BE 41 OE F3 59 46 60 E5 23 . yIE™a,n.aYF iz
00000000A0 BA B3 BD 51 9E 4C 16 B2 A4 FD 32 90 52 AS 39 FD sz QEL.,ny2.RA9Y
00000000B0 DE TE 18 4E 17 D3 FA EE 87 DC 1& 3D 1B OE CD 2E T~.N.0uassl.=..I.
00000000C0O F3 LE OE 06 6E 92 89 DC 35 26 8D BE 5C 64 CF C5 A«..n'w05tT»\dDL
00000000D0 AR 32 30 S2F 69 41 04 19 50 09 7B 27 C1 80 7C B7 S:0Zik..P.{$A€] -
00000000ED FC 18 12 8D 6D 41 EO 6R 83 01 92 2F A2 CC OD 26 d..TmR#j..7/"E.!
00000000F0 DE OB C1 34 D4 D7 22 BT 65 CF 37 93 D5 AB 97 98 T.A40x" -eD7"0e—.
0000000100 4F &5 31 8& 11 OC 03 27 11 0B 19 2E 2& 17 1A 6B Oell...'...Z*..k
0000000110 52 ZF DD F5 80 06 4B B3 29 9F 62 14 F1 02 14 81 R/Y4€.K2)b.A...

Sector overwritten by HermeticWiper, seen in HxD
Not surprisingly, on reboot our Windows OS will no longer work:

4/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/bad_image_error.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/overwrtitten_disk.png

iszing operating system

Message shown to the user after the reboot of the corrupt system
But what exactly happened underneath? Let’s have a closer look...

Used components

The initial sample:
1bc44eef75779e3caleefb8ff5a64807dbc942b1e4a2672d77b9f6928d292591 — comes with
several PE files in its resources:

M Peiowice Hacke

EEAF c 0QALLEISP OO

Resources of the malware

The names chosen for the resources (DRV_X64 , DRV_X86 , DRV_XP_X86 , DRV_XP_X64)
suggest that they are a version of the same driver, dedicated to different versions of
Windows: appropriately 32 or 64 bit version, or a legacy version for Windows XP. Each of
them is in compressed form. By checking the dumped files by the Linux file command,
we can see the following output:

file DRV_XP_X86
DRV_XP_X86: MS Compress archive data, SzZDD variant, original size: 13896 bytes

5/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/os_missing.png
https://www.virustotal.com/gui/file/1bc44eef75779e3ca1eefb8ff5a64807dbc942b1e4a2672d77b9f6928d292591
https://blog.malwarebytes.com/wp-content/uploads/2022/03/drivers_in_resources.png

To find out how they are loaded, we need to have a look at the sample that carries them.

Fortunately, the sample is not obfuscated. We can easily find the fragment that is responsible
for finding the appropriate version of the driver:
ionInformation}};
ation
Information
tConditi
SetCaonditionl
rifyversionInfold

FindResourceW(hModule,

FindResourceW(hModule,

f (GetLastError() != 1

N 8 " HermeticWiper

FindResourceW(hModule,

FindResourceW(hMadule,

SizeofResource(hModule, wB);

nNumberofB oWrite =
selecting which driver will load
The buffers are then decompressed with the help of the LZMA algorithm:

6/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/searching_driver_res.png

~ PathAddExt Path, L".sys");
w21 = (con ZOpenFileW(file name, &open_buf, &

lpBuffer

al, (INT)v2l);

%", L"SYSTEMA\MAC tControlSset\\services\\", FileName);

éet_disk_free_space_send_iﬂctl{:ile_naTEj;
vl = DeleteFileW;

else

- LZClose(ret_wal});

Code responsible of decompress drivers compressed by LZMA algorithm and driver
installation

This format of compression is supported by a popular extraction tool, 7zip. We can also
make our own decoding tool, basing on the malware code (example).

As a result we get 4 versions of legitimate drivers from the EaseUS Partition Master — just as
reported by ESET (source).

o 2c7732da3dcfc82f60f063f2ec9fa09f9d38d5cfbe80c850ded44de4 3bdb666d

o 23ef301ddba39bb00f0819d2061¢c9c14d17dc30f780a945920a51bc3ba0198a4
o 8c614cf476f871274aa06153224e8f7354bf5e23e6853358591bf35a381fb75b

» 96b77284744f8761c4f2558388e0aee2140618b484ff53fa8b222b340d2a9c84

Based on the timestamps in the PE headers, the builds of the drivers are pretty old. Probably
they have been stolen by the attackers from an original, legitimate software bundle. Each of
them comes with a Debug directory, including a PDB path. Example:

737

https://blog.malwarebytes.com/wp-content/uploads/2022/03/lzma_dec.png
https://gist.github.com/hasherezade/2c7837874f7adf0f73192f4d861d83c6
https://twitter.com/ESETresearch/status/1496581912940396551?s=20&t=wAz5sfT7pTIN-F0aqFaXTg
https://www.virustotal.com/gui/file/2c7732da3dcfc82f60f063f2ec9fa09f9d38d5cfbe80c850ded44de43bdb666d
https://www.virustotal.com/gui/file/23ef301ddba39bb00f0819d2061c9c14d17dc30f780a945920a51bc3ba0198a4
https://www.virustotal.com/gui/file/8c614cf476f871274aa06153224e8f7354bf5e23e6853358591bf35a381fb75b
https://www.virustotal.com/gui/file/96b77284744f8761c4f2558388e0aee2140618b484ff53fa8b222b340d2a9c84

Disasm: INIT | General | DOS Hdr | Rich Hdr | File Hdr | Optional Hdr | Section Hdrs | 8 |Imports | 8 Exception | @ Security |® BaseReloc. | @ Debug

MName Meaning
Characteristics

439TE6B4 Tuesday,

0

0

2 Visual C++ (CodeView)
91

RSDS| Table
Mame
Sig
GUID 1 7-BD38-44F9-A191-FIDAF291628D]}
Age

PDE h:\epm2.0\01_prejectarea\00_scurce\epm2imod.windiskaccessdriver\windiskaccessdriver\objfre_wnet_amd&famded\epmntdrv.pdb

Driver overview

The drivers leveraged by HermeticWiper are part of the Suite from EaseUS, a legitimate
software that brings to the user disk functionalities like partitioning and resizing. As told, this
tool is legitimate so no one was detecting the sample in VirusTotal at the time of the attack:

Ho sacurity vendans and no sandboxces fagoed this fle as malicious

- A e me e m D e o
a0 IdIBdScbas0CcSDond 4 4dnadbdbsesd 11,57 KB 2022-02-23 20: 30048 UTC L

native Overlly pomms sQned

DETECTION DETALS RELATIONS BEHAMIOR CONTENT SUBMESSIONS COMMUNITY 0‘
Security vendors analysis on 7022-02-23T20:30048 UT

Acronis [Static ML) Undetected Ad-Aware Undetected
hinlsib-W3 Undetected Alibaba Undetected
Undetected Aritiy- AL Undetected
Undatected Aovast Undatected
noetected Bakdi Unoatected
BitDwefender Undetected BitDefender Thits Undetected

VirusTotal showed 0 detections for used drivers
Looking inside the driver, we can see typical functions. The driver creates the required
device and establishes some Dispatch Routines, as can be seen in the following image:

8/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/driver_pdb.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/4a614eb6-82c9-4e6f-b5b4-bd27fef1759b.png

imov rbx, rex
lea rdx, SourceString ; "\\Device\\EPMNTDRV"
lea rcx, DeviceName ; DestinationString
call cs:RtlInitUnicodeString
lea rdx, aDosdevicesEpmn ; "\‘\DosDevices\\EPMNTDRV"
lea rcx, SymbolicLinkName ; DestinationString
call cs:RtlInitUnicodeString
lea rll, DeviceObject
lea r8, DeviceName ; DeviceName
:mav [rsp+48h+DeviceObject], rll ; DeviceDbject
mov rad, 22h ; """ ; DeviceType
®or edx, edx ; DeviceExtensionSize
mov rcx, rbx ; DriverObject
!mov [rsp+48h+Exclusive], @ ; Exclusive
and [rsp+48h+var_28], @
call cs:IoCreateDevice
test eax, eax
imov edi, eax
is loc_FFFFF8@1EE3418B5
1 =T .
lea rdx, DeviceName ; DeviceName
lea rcx, SymboliclLinkName ; SymboliclinkName
call cs:IoCreateSymbolicLlink
test eax, eax
mov edi, eax
jns short loc_FFFFFB@1EE341B4E
= ' = !
mowv rcx, cs:DeviceObject ; DeviceObject
call cs:IoDeleteDevice loc_FFFFFB@1EE34184E:
jmp short loc_FFFFFBR1EE3418BS mov rax, cs:DeviceObject

DriverEntry routine
The internals of the driver are quite straightforward. In order to access the driver from
usermode we need to use CreateFile API function and the name of the device under
which the driver was installed (\\.\EPMNTDRV) along with the partition ID. Example shown

below:

UUS UL BDF
004026 E4
DO4026ES

UJGEE
004026F 2
O04026F6
004026F8
004026 FD
DO4026FF
<

(X R R RN

b8 VALY
50
FF15 4

83c4
8D5424 20

SD4C24 48
Ga 00

E8 73IFLFFFF
SEDE

rax, irp_create
[rbx+7@8h], rax
rax, ir_close
[rbx+88h], rax
rax, irp_devicecontrol
[rbx+@E@Kh], rax
rax, irp_cleanup
[rbx+188h], rax
rax, irp_read
[rbx+88h], rax
rax, irp_write
[rbx+28h], rax
rax, driverunload
[rbx+68h], rax

7

or dword ptr [rax+3eh], 1@h

pUSM LU
push eax
¢all dword ptr ds:[<Bensprintfu=]

add esp.10

Tea edx . dword ptr ss:[esps20
lea ecx dword ptr ss:[esp=48
push 0

q:.nl'l xB6na. 401870

mov ebx ,eax

test_ebx,ebx

G5 0028
ES 0028 D5 OO
€5 0023 55 000

ST(0) 00000000C

F5 00!

ZFD20 .I!iL"\'\\\.'\'\EM‘I'DR\r\\U"

MOZ6EB xB6na.exe:S2E6EE #1AEE

- | Default (stdcall)
1: [es 00000
2: asml 00408
3: [esp+c] 000OD(
4: [esp+10] 004
5: [esp+ld] O04(

024CFDTE | L™\L NN, \\EPMNTDR!
ol @Moump? @Dump3l @M Dumpd EMOumpS B8 Warchi [eellocals 4 Swue R 0246F078 | LAY VAND™
| Hex | ~] 024cFo2s | 00405100 | xBsna. 00405100
DR24CFD2C | QDD

HE: LT L LA), Jooe 024CFD30 | DO4DZBAD | x86na. 04026AD

3 W. o0 00 80|F o E"-IEFP 34| 00402640 | xEGna. 00402640

3|00 00 FO F9 |01 00 00 30|Fa c%jg;'ﬁjg %’533&2

Y 00 &0 FE O1I00 OO0 20 FClOl OO OO 7OIFD === T e L

Usermode component, building the strmg that will be used to open a HANDLE to the device

https://blog.malwarebytes.com/wp-content/uploads/2022/03/c50cd22f-cee1-46b4-8028-92c6a1d671d4.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/a7acf8e2-6209-4b56-bcb5-3a89ad8bab0d.png

This string is important to understand the driver capabilities. As you can see, this drivers
code will convert this sent string from usermode to integer and will use that integer as an
input to the “saveReferenceHardDisk™ helper function. As it can be extracted from the
images, this helper function will save a reference to the physical disk
(\Device\Harddisk[num]\Partition0) in FsContext attribute:

v1l4 = RtlUnicodeStringToInteger(&FilenameUNICODE, @xAu, &fileNameInt)
if (1vid)
1
if (fileNameInt < @x64 &% (v6 = saveReferenceHardDisk(fileCbj, fileMameInt)) != @)
1
Object = v6;
v7 = IoGetAttachedDeviceReference(ve);
if (w7)
{
ObfDereferenceObject{Object);
Object =
dev 0bj = getDlskDev1ceDh]ect(7);
if (dev robj)

ObfDereference0bject{0Object);
fileObj-»FsContext2 = devObi;
Irp-»Iostatus.Information = @;

IRP_MJ_CREATE function
PDEVICE_OBJECT _ stdcall saveReferenceHardDisk(PFILE_OBJECT fileObj, ULONG fileNameULONGFormat)

{

struct _UNICODE_STRING DestlnatlonStrlng, £/ [esp+8h] [ebp-8Ch
PFILE_OBJECT FileObject; // [esp+leh] [ebp-84h]
PDEVICE_OBIECT DeviceObject; // f'-F-Lﬂ“j [ebp-8&h]

wchar_t SuurceStrlng[EB], /I [esp#18h] [ebp-7Ch]

int v7; // (esp+adh] [ebp+18h]

De Obqje = B;

5 z[@] =

memset(&;u,-uzuz in [1], B, @x76u);

if (print(SourceString, @x78, L"\\Device\\Harddisk¥u\\Partition®”, fileNameULONGFormat, v7})
return @;

RtlInitUnicodeString({&DestinationString, SourceString);

if (IoGetDeviceObjectPointer(&DestinationString, @, &FileObject, &DeviceObject))
return 8;

ObfReferenceObject(DeviceObiject);

[1le0b7 —>Fs[-:-ntext FileObiect;]

return Devicelbject;

}

Detail of helper function
This behaviour can has been tested also in real time. We can see how the leading
backslash is removed prior to convert this value to integer type:

— - # st =
[ko - P P
Aadd Fazopel - v v T LT T 3T OWE X wieie o
S b TR LT e mov o 00 02 09 29 00 02 02 20 00 D2 09 20 MR .
FEEFRARN B IA111 SOB3EET sty 3 8 P
. o0 B8 o o o B0 6 B0 TS B0 T4 B0 Y2 B0 .
R — FAHEI0) e M11TS ARRICIRT add T B B0 DO B B0 DO BB B9 B0 BB
FREFHI01" o0 1110 slEILEB0M0 call 180 B0 B3 0 0O 03 0 B0 DO O B0 0O 0D OO 30 B .
FREFIIRL 4 311530 LLBSI42LI0 lea 10 o Gl b 0 00 b B B B3 B B0 08 FT B T0 R
PIATIERL ealA114] 43RS 240 las 108 B0 B B9 B 90 00 B9 09 77 B TI 69 00 BB ,
FHAFEI00" 00 M1 badBoa0R0 - 108 LE 03 &% @3 &% 43 4F 60 % O 90 59 10 C7 7H RO
PIATREL ee 341184 FYLESALYR0N call i [B o b b 0 A EL 2B Db B FF FF
. -t a4 Frefdand s 1150 Ko test a1 &@ AD EL 2R B9 CR FF FF & AD E1 2B 0 CR FF FF
FREFEI0L i M1155 ESAE L 0 0SB S0 00 05 B3 S0 B0 TE IR0 00 B 8 0 B .
- Sa10 FRETFBON eadd11ST BFBSIIBLOON o o B8 OF B0 B0 B 0 B 00 BB O 30 00 BB B0 B0 B8 .
WXL FAAFAB0L ee 1158 RIT: 2IBES omp r - B "I ol @ @5 B2 15 93 &6 4D &6 6E 6% C5 88 55 1E O7 TR OBC
L FREFTERE e B115T BFEI21N100N]-ir 31dr \ll.d.l: FEFRIN] eeddd 19 --mla L L L
FIPTARRL pa BA116E ARHI542L1000 quord ptr [rapeddn], @ S0 OF @1 99 B9 B9 99 00 5B 12 22 20 R B FF FF

Parameter handling shown in a kernelmode live debugg/ng sessmn
IRP_MJ_CREATE function will save a Device Object pointer for the hard disk in FsContext2
attribute, returned by getDeviceObject helper function. The DeviceObject pointer in
getDeviceObiject is used to find IRP_MJ_CREATE function will save a Device Object pointer
for the hard disk in FsContext2 attribute (returned by getDeviceObject helper function). The
DeviceObject pointer in getDeviceObject is used to find the disk.sys associated device object

10/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/image-16-edited.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/image-19.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/0087f1d7-33b0-41ca-a0b5-7636e7f6d978.png

by traversing to the lowest device object leveraging loGetLowerDeviceObject function. To
confirm that the lower device object is indeed the one we are looking for we check the
ServiceKeyName of the object with “Disk” which indicates that its looking for the disk.sys
object as the ServiceKeyName for that object is “Disk”. These objects will be used later in
read and write operations. That means that, when different operations are requested to the

driver from usermode, the real operation will be performed over the machine physical disks.

PDEVICE_OBJECT _ stdcall getDiskDeviceObject(PDEVICE_OBJECT Object)
1

PDEVICE_OBJECT i; // esi

struct _DRIVER_OBIECT *v2; // eax

struct _UNICODE_STRING disk_str; // [esp+dh] [ebp-8h]

RtlInitUnicodeString(&disk str, L"Disk™};

for { i = Object; ; i = (PDEVICE_OBIECT)IoGetLowerDeviceObject(i} }// keep going to the lower device object until
// the one with ServiceNameKey as "Disk"™ is found
{
if { 11)
return @;
vZ2 = i->DriverObject;
if (w2)
break;

LABEL_6:

»

if (RtlCompareUnicodeString(&v2-»DriverExtension-»ServiceKeyMame, &disk_str, 1u))// comparison with "Disk”
{
if { Object !=1)
ObfDereferenceObject(i};
goto LABEL_6;

}

return 1i;

}

Detail of getDiskDeviceObject helper function

Next images show how the driver builds the incoming requests and forwards them to the
lower level devices:

DeviceObjecta = IoGetAttachedDeviceReference(va);

if (DeviceObjecta)

irp = irp_l-»AssociatedIrp.MasterIrp;
if (irp)

KeInitializeEvent(&Event, MNotificationEwvent, @);
! = IoBuildDeviceIloControlRequest(
inst cation-»*Parameters . DeviceloControl.IoControlCode,

StacklLocaticn=»Parameters.DeviceloControl.InputBufferLength,

aStack ocation-»Parameters.DeviceloControl.OutputBufferLength,
&Event,
&IoStatush s
if (v7)
vs = IofCallDrive (L:'.".;-I....—_ gcta, };
if (v5 == 8x183)
{
KeWaitForsingleObject(&Event, Executive, @, @, @);
v5 = IoStatusBlock.Status;
' . .
irp 1-»IoStatus.Information = IoStatusBlock.Information;
}
else
i

5 = STATUS_INSUFFICIENT_RESOURCES;

Example of EaseUS driver handling IOCTL requests

11/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/image-20.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/e53f1404-490b-4649-b625-1591428b4a32.png

Example of EaseUS driver handling read operations

Mappe mva

- LdLda

&IoStatusBlock);
Example of EaseUS driver handling IOCTL write operations
By using FsContext2 field saved by a CreateFile operation performed from usermode, this
driver could be seen as a proxy driver where IRPs are handled by underlying devices. In a
nutshell, this legitimate driver lets the attackers bypass some windows security mechanisms
which would ideally be forbidden from usermode such as writing to certain sectors of the raw
disk.

Implementation of the Wiper

This malware is designed to maximize damage done to the system. It does not only
overwrite the MBR, but goes further: walking through many structures of the filesystem and
corrupting all of them, also trashing individual files.

We know that this executable is going to somehow abuse those drivers in order to implement
the wiper functionality. Yet, the question arises, how exactly is it implemented?

It is worth to note that Windows (since Vista) introduced limitations, thanks to which only the
sectors at the beginning of the disk can be written to from usermode (with the help of the
standard windows drivers). If we want to write to further sectors, i.e. overwrite MFT (Master

12/37

File Table) we need some custom workarounds. (More explanation given here.)

In case of Petya (as well as NotPetya, which used the same component), this workaround
was implemented by an alternative “kernel” that was booting (instead of Windows) on
machine restart, and doing the overwrite. In case of the HermeticWiper, the authors decided
for an easier way: they used another driver, that was able to do such overwrites.

First, the malware parses NTFS structures, and stores information about them in the internal
structures. For implementing the reads, standard system devices being used. After the
needed data is collected, the additional (EaseUS) driver comes into play: it is used as a
proxy to write into the collected sectors.

The attack can be divided into several phases:

1. Preparation, including:
o Installation of the additional driver (EaseUS)
o Disabling system features that may help in recovery, or in noticing of the attack
2. Data collection: walking through NTFS structure, collecting sectors and files that are
going to be overwritten. Also, the random data of appropriate size is generated for the
further overwrite.
3. Trashing (at this stage the EaseUS driver is utilized): the collected sectors are being
overwritten by the previously generated random data

At the end, the system may be automatically rebooted.

Execution flow

Let’'s now have a look at the malware sample, to see how those phases are implemented in
detail.

Preparations

First the sample parses command line arguments. They will have minor impact on the
execution — may just alter how long the sample is going to sleep between the execution of
the particular phases.

Then, the sample proceeds to set privileges that are needed in order to execute the actions

that are going to be performed. Two privileges are being set in the main function of the
malware: SeShutdownPrivilege (that allows to reboot the system) and
SeBackupPrivilege (that allows to manipulate system backups):

13/37

https://community.osr.com/discussion/101522/vista-rtm-writing-to-raw-disk-sectors
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/

HIDWORD(alloc

FindFirstFileW(Filename, &FindFile

Da

GetLastError;

AdjustTokenPrivileg h s
Hermetic Wiper adjusting required prlwleges
Here comes and interesting twist: the string defining SeShutDownPrivilege is composed
on the stack, and one chunk in between is missing:

HIDWORD(

OF46CE cmovbe ecx,eax
64 08 push s
834024 44 mov dword ptr ss:|fesp+44],ecx
FFD& eall esi kernel32. GetProcessHeap
50 push eax
FF15 S5SCS508000 call dword ptr ds:[<&RtlAllocateHeap:>] ntd11.Rt1ATlocateHeap
SEDS mov ebx,eax
C74424 40 53006500 mov dword ptr ss:|lesp+40f, 65
C74424 44 53006800 mov dword ptr ss:[esp—44],¢5
C74424 48 75007400 mov dword ptr ss:fesp+48],740075
C74424 4C 64006F00 mov dword ptr ss:fesp+4C],cF0064
C74424 50 9A0Z0000 mov dword ptr ss:[esp—sa],:a;
C74424 54 00000000 mov dword ptr ss:fesp+54],0
C74424 58 69007600 mov dword ptr ss:fesp+53],760069
C74424 5C 63006C00 mov dword ptr flesp+sCl, 6C0069
C74424 60 65006700 mov dword ptr :Besp+60d, 670065
C74424 &4 65000000 mov dword ptr s lesp+64fll, 65 565:'a’
FF15 ACSO0S8000 call dword ptr ds: [d&GetcurrentPrucess>] kernal3z2. GetCurrentProcass
8D4Cz4 10 Tea ecx,dword ptr ss:[esp+10f
51 push ecx
- A O sk 30

dword ptr [D0B050AC <lbc44eef7S577oe3caleefbaffoac4807dbca42bled4azeradrrbafes2ad2a2591, &GetCurrentProcess>]=<kernel3z2. GetCurrentProcess>

. Text: 00803CE0 1lbc44eef75779e3caleefbsTT5a64807dbca42ble4azerzd7rbaTe928d292591. exe: $3CEB0 #3080

Woumpi | @oump2 | @oump3 | @oump4 | @pumps | & watch1 | Ix=lLocals 2}" Struct

Address

Hex ASCIT

0109F &40
0109F&50
0109F6&E0
0109F&70

53 00
9A 02
85 00
oo 00

65
oo
67
o0

oo
oo
o0
oo

53
oo
65
oo

00 &8 00|75
00 0D DO0|&9
00 00 00|00
00 00 00|00

74
76
00
00

oo
alu}
oo
oo

64
69
o0
o0

o0
o0

o0
o0

S.e.5.h.u.t.d.o.
........ i.v.in1.
e.g.e. c

Detail of uncompleted SeShutdownPrivilege string
This missing chunk wnPr is then being filled at the position that is calculated depending on
the first character of the current executable name. Due to this, the string becomes complete
(and the privilege is set properly) only in the case if the sample has a name starting from “c”.

14/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/privileges1.png

50 push eax
FF15 DS8508000 call dword ptr ds:[<&FindFirstrilew=] kernel3z.FindFirstFilew
8B3D £3508000 mov edi,dword ptr ds:[<&GetLastError=]
FFD7 Eall edi kernel3z.GetlLastError
805424 0CO30000 Tea eax,dword ptr ss:|fesp+20C[)
50 push eax
FF15 &C5158000 call dword ptr ds:[<&CharlLoweri:=] user3z.CcharLowerw
OFE7E424 0C0O30000 movzx eax,word ptr ss:|[fesp+30C[)
8B35 2C508000 mov esi,dword ptr ds:[<&LookupPrivilegevaluew=]
C784C4 3IBFDFFFF 77004 mov dword ptr ss:[esp+eax*8-2C8],6E0077 if EAX = 'c*' or ‘C*="
C784C4 3CFDFFFF 5000 mov dword ptr ss:|[[esp+reax=8-2C4]|,720050
8043 04 1ea eax,dword ptr ds:[ebx+4]
50 push eax
804424 44 lea eax,dword ptr ss:llesp+44]
. 50 push eax
. 3D62 6A 00 push 0
™ [=4=2T4 ST acH ardirani?? 1 analkinDrdud 1anoiraloow
<

dword ptr [espt+eax*3-2C8]=[0109F650 L"wnPriwvilege"]=6E0077

.Text:00803043 1bc44eefror7oe3caleeThsfTsac4807dbe942ble4a2672d77b9T6928d292591. exe: §3D43 #3143

8ly Dump 1 Ly Dump 2 &2 Dump 3 &Y% Dump 4 &l Dump 5) watch 1 lx=] Locals o struct

Address | Hex ASCII

0109F620|01 00 OO 0OO(232 OO OO0 OO|O4 OO OO OO|00 OO OO OO#. . ccvennnn
0O109F630 | BE TE 26 EA(BE 23 D8 01(|Z 14 00 00 00| »~&E83)8.T°.]....
0109F640(53 00 &5 00(53 00 &5 00|75 00 74 00|64 00 6F 00|S.e.S5.h.u.t.d.o.
0109F650 |77 00 &E 00|50 OO 72 0O &3 00 6C 00|WERASESRLi.v.i.1.
0109F660| 65 00 &7 0OOD(65 OO0 DO OO 00 00 0D 00| B QeBrisnnsnsnnns

SeShutdownPrivilege completed in later steps

The reason why the authors decided for such unusual alteration of the flow is not sure. It
may be just to obfuscate this particular, suspicious string. It is also common for malware
authors to use a name check as an anti-sandbox technique (since sandboxes may assign to
samples some predictable names: in the case if such name was detected, sample may exit,
so that its behavior cannot be tracked by the Sandbox). However, here the change in the
sample behavior is very minor — it affects only the reboot functionality, not the main mission
of the malware.

69 00 76 00
00 00 00 0O

Driver Installation

After that, the malware proceeds to the installation of the driver:

ges(hndl, is disable, new state, HIDWORD(new st

anack_and_iﬂstall_driue Struct_1))

Driver intallation
The installation function takes several steps.

First, the system is fingerprinted, so that the malware can select the most appropriate
version of the driver to be used. Depending on the Windows version, and the bitness (32 or
64 bit), the resource is selected.

15/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/unpack_drivers.png

j_memset(pszPath, @, sizeof(pszPath)};
ModuleHandleW = GetModuleHandleW(L"ke
v38 = wnsprintfW({pszPath, 268, L"\\??
if (ModuleHandleM)

GetProcAddress (ModuleHandleW, "WowsdReverthlows
IskowedProcess = GetProcAddress(ModuleHandlel,
if [IskowedProcess)
1
CurrentProces
{ Iskowb4dProce

ProcAddress = GetProcAddress(ModuleHandleb,

= GetCurrentProcess();
s){CurrentProcess, &is wow);

j_memset(&VersionInformation, @, sizeof(VersionInformation));
VersionInformation.dwOSVersionInfoSize = 284
VersionInformation.dwMajorVersion = 6;
VersionInformation.dwMinorVersion = 8;
v5s = VerSetConditionMask(@is4, 2u, 3u);
ve = VerSetConditionMask(v5, lu, 3u);
if (VerifyVersionInfoW(&VersionInformation, 3u, v6))
{
if [is_wow)
Resourcek FindResourcel(hModule,
else
Resourcek FindResourceW(hModule,

f (GetLastError() != 1158)
return &;
v35 = 1;
if [is_wow
Resourcek FindResourceW(hModule,
else
Rezourcek = FindResourceW(hModule,

resource =
IResourceW)
return 8;
= LoadResource(hModule, Resourcel);
Different drivers available to load

Before installing the driver, the crash dump mechanism is being disabled:

phkResult = @;
if (!RegOpenkeyW(HKEY LOCAL MACHINE, L"SYSTEM\\CurrentControlSet\\Control\\CrashControl”, &phkResult))
1

*Data = 8;

RegSetValueExW(phkResult, L"CrashDumpEnabled’

RegCloseKey(phkResult);

HermeticWiper disabling Crash Dumps

Crash Dumps are usually being made if the full system crashes, possibly because of a
bug/instability in a driver. They contain information about the full status of the system, and on
what exactly happen, in order to help debugging. Disabling crashes before the installation
suggests that the authors of the malware have some level of distrust in the used drivers, or

https://blog.malwarebytes.com/wp-content/uploads/2022/03/select_resource.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/crash_dump_disable.png

believe that the executed operation posses some risk of crashing the system. That’'s why
they want to be extra sure that if it eventually happens, the Administrators will have a harder
time to find the reason.

Then, they check if the driver is already installed. They do it by sending there and IOCTL,
that is supposed to retrieve information about the drive geometry. If this operation has failed,
it means the driver is not there, and they can proceed with the installation.

wnsprintfW{Filel

EaseUS device object reference
The installation is done by first generating a pseudorandom, 4-character long name for the
driver, from the hardcoded charset. The function also makes sure that the file with the
generated name does not exist yet.

while (PathFileExistsW(pszPath));
Generation of driver name
Then, the compressed version of the file is being dropped. And finally, the driver is
decompressed from it.

This PC ¢ Local Disk () ¢ Windows » Systemn32 » drivers

~

Mame Date modified Type Size

% netio.sys 2014-11-21 09:10 Systemn file 464 KB Dropped EaseUS
%) netvscB3.sys 2014-11-21 09:10 Systern file 85 KB

|] njdr 2022-02-2501:12 File 11KB|

1 1
Fud | P
[e
=T =1
— —
R ey

|%| njdr.sys 2022-02 112 System file 18 KB

driver shown in explorer
The decompressed driver is installed as a service:

17/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/check_if_install.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/make_name.png

e, wipStruct);

1 = LzOpenFilel(

lpBuffer = lzHndl;
if { lzHndl >= @)

file_name;

= StrstrIW(file_name, L"System32");

) wsprintfi(su ' "SYSTEMY\L tControlset\\services\\", FileName};
Regheletekeyl| 1

éen_randDanDr_retrieual_pminters{;ile_naTE, wipStruct_);
EasyUs driver installation
At this point, the newly dropped files are also added to the structures that will be further
passed to the wiping functions — so that the files can be overwritten at low level. More about
it is described in section “Data collection”.

The installation function (denoted as create_driver_svc) first enables yet another
privilege: SelLoadDriverPrivilege (which is required to allow loading drivers):

ager = Adjus

aetLastEerri};
SelLoadDriverPrivilege
Then the driver is added as a system service, and started:

18/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/decompress_and_install.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/enable_driver_load.png

Detail driver service being created

(!ServicedW)

GetLastError();

LABEL 12;

This triggers execution of the DriverEntry function, and since that point, the driver is
residing in memory.

After the successful installation, the registry keys related to the service, as well as the
dropped files, are deleted, to make the new driver more difficult to spot:

Deletion of dropped files
nsionk = @;
eFileM(file name);

We must note, that file deletion does not interfere in the functionality of the driver. It is still
loaded in memory (till the next reboot) and will be available for the further use.

Disabling shadow copies

It is a common action done by ransomware to delete shadow copies. It is supposed to
destroy system backups, and paralyze the recovery. In this case, we can see the sample
disabling the Shadow copy Service:

19/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/add_and_start.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/delete_both_files.png

viceHandl

etLastErm
viceHandl

vld = GetlastError();

Shadow Copies being disabled

Data Fragmentation

During our analysis, we noticed that the malware fragments the files present on the disk (as
opposite of defragmentation).

Before the fragmentation routine, it changes some settings related to explorer:

Reistry changes to make it harder to spot NTFS operations
This is probably to hide the information about the file status to the user, to keep them in blind
for as long time as possible.

Below function shows how the fragmentation routine is executed:

20/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/disabling_shadow_copies.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/disabling_in_explorer.png

if ()
{
for (1 =8; 1 < @x1@; ++1)
{
t = 1 | t tructl->hEvent;
pThr r ter tl->unke = i;
if (!'WaitForSingleObject(t, 8))
break;
enum_files_callbackThirdParam(Avoid_special_windows_dir_lists, leN s fragmentFile, 1 1 L tructl);

}

}
Wrapper function used for fragmentation purposes

The standard windows directories are being excluded:

= ::HeapFree;

recial windows_dir_lists(PCWSTR pszFirst, PWIN32_FIND DATAW a2, elementStr *a3)

Ch] [ebp-1Ch]

Foldr list that will be skipped
This can be done both to save time (by not corrupting standard files), and to avoid the
interference with system stability.

The file fragmentation process can be seen in next images:

QuadPart = _ PAIRG4 (vG

ntrol(hFile, TL_GET_RETRIEVAL_POINTERS, &InBuffer, Bu,
GetLastErr

1 _points + 2) - InBuffer.QuadPart;

IDWORD(vE) >> 1;
Fragmentation detail (1)

21/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/image.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/fragment_revieval_points.png

v12)

sReturned,

" sub_4811F .
sub_4811E hitmap | jutfer F 1 points + 3), @);

LABEL_15;

eval points;

&struct_1-»bitmap_buf, &struct_l->bitmap_size);

Fragmentation detail (2)

The fragmentation algorithm implementation is achieved by using different IOCTL_CODES
(FSCTL) as FSCTL_GET_RETRIEVAL_POINTERS and FSCTL_GET_MOVE_FILES. The
code looks pretty similar to a defragmentation code. But in this case, is being modified in
order to fragment, where file chunks are splitted and moved to free clusters in the disk.

Data collection

After those preparations, malware enters the second stage of the execution: data collection.
In casual ransomware cases, we may see sometimes that prior to the encryption, malware
iterates through various directories, and makes a list of files that it is going to attack. This
case is analogous, but much more interesting, because the authors iterate not through
directories (at high level, using windows API), but at low level, through NTFS file system,
reading various structures and parsing them manually. To enumerate them, they send
IOCTLs through standard Windows devices (the newly installed driver is not used yet).

Data storage

22/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/fragment_move.png

The output of this parsing is stored in custom structures which we managed to reconstruct,
and defined in the following way:

struct elemStr

{
elemStr *fLink;
elemStr *bLink;
chunkStr *chunkPtr;
DWORD diskNumber;
BYTE *randomBufToWrite;
DWORD sizeBuffer;

};

struct chunkStr

{
chunkStr *fLink;

chunkStr *bLink;
LARGE_INTEGER offset;
QWORD chunk_size;

}
They both are linked lists.

The first one elemstr defines the element that will be overwritten. Its size is retrieved, and
the random buffer dedicated for its overwrite is generated:

23/37

F(Cryptﬁcquire[untextw{Ephprﬂu, @, @, lu, &

ICrypteenRandom(phProv, sizeBuffer, randomBufToMrite) i

data being generated for later trashing action
The “chunk” represents a continuous block of physical addresses to be overwritten.

So in general, the malware will use these structures in a 2 step process. First step will collect
all the data. The second step will wipe this data, using the previous created structure.

Collected elements

As seen before, these structures will be sent to functions that will perform the data
corruption, at a very low level. The elements that are collected for later destruction are
presented below.

Own executable and the dropped drivers

We have seen that the attackers were interested in cleaning their trace. To accomplish that,
they will delete their own executable from disk, even tough the binary itself keeps running
and in memory. As any other task performed in the filesystem by HermeticWiper, the way of
deleting their binary is slightly different as other malwares do. The attackers first manage to
find which offset the binary occupies in raw, and finally they will overwrite that specific offset.

24/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/generate_random_buf.png

SetLastError(vld);
if (GetModuleFileNameW(®, Filename, @x1@4u))
gen_random_for_retrieval_pointers_Fill_add_To_diskStruct(Filename, &wipStructOwnBinary);// ADD OWN BINARY

HermeticWiper file will be destroyed, along with other elements
The dropped files (compressed and uncompressed driver) were added to the same structure,
just after the the installation.

The Boot Sector

One of the attackers motivation is making devices incapable of loading the OS. The first step
followed is enumerating all physical devices, as well as partitions. For that, a simple loop is
used that tries to open a handle to HardDisk[num], where num is iterated from 0 to 100:

for (i =8; 1 <= 188; ++i)

fill partitions_info(i, &wipStruct, make random data for sector);

showing how attackers will iterate through HardDiskO to HardDisk100

All this information is then stored into a elemStr structure that contains data as the disk
number. In this case, chunkElement will describe raw addresses of boot sectors. In that
regard, an especial mention is made to C:\System Volume Information . The attackers
will add to boot_sectors structure this folder contents:

parse_NTFS_AND_execute_callback(
AE<TAaT q 4 .
<High,

2

&- 2
indexRootExecuting,
$INDEX_ROOT); [/ $INDEX_ROOT
[/ Bx9e
if (g || (dat ter = 1 tr.dataCounter) == @)
i
parse NTFS_AND execute callback(
d »
&topStr,
indexAllocationExecuting,
SINDEX_ALLOCATION); f/ BPINDEX_ALLOCATION
[/ exAB

// Used to implement filename allocation for large directories.
ter = topStr.dataCounter;

Calls to parse_ NTFS_AND _execute_callback function

According to Microsoft, “The Mount Manager maintains the Mount Manager remote database
on every NTFS volume in which the Mount Manager records any mount points defined for
that volume. The database file resides in the directory System Volume Information on the
NTFS volume” (Windows Internals, 6th edition). So this technique is also created for
increasing damage. Finally, all these collected offsets will be overwritten as the malicious
binary was, leveraging the EasyUS driver.

Reserved Sectors and MFT

25/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/891d661c-e093-4bb3-aa62-dd81025a58cd.png

As before, the malware will brute-force again against the PhysicalDrive ID to find valid drive
IDs. Then it uses IOCTL_DISK_GET_DRIVE_LAYOUT_EX to retrieve information about all
the primary partitions present on the drive and reads the first sector from that partition. Other
information required to read one sector from the disk is retrieved by using the
IOCTL_DISK_GET_DRIVE_GEOMETRY_EX.

Retrieving information about each disk
Once the first sector of a partition is read then the callback function passed by the malware is
invoked on this sector.

26/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/disk_one_by_one.png

GetProcessHeap
Heapalloc

Depending on the filesystem type if its FAT then it wipes all the Reserved Sectors, the boot
record sectors in FAT filesystem are part of Reserved Sectors. In case of NTFS the malware
wipes the MFT and MFTMirror (backup MFT) present on the disk, the purpose of which is to
make the recovery of the data harder.

StretrA(&Stringl,

orsPerFAT sector_buf->SectorsPerFAT;
i !Sect rFAT

SectorsP
BytesPersector
to_gen_random

ad,

Bwiper_struct->fLink,

a5 + BytesPers5e

a5 + By
BytesPerSector

BytesPerSector +

BytesPerSector,

sector

Routine for FAT filesystem

https://blog.malwarebytes.com/wp-content/uploads/2022/03/process_partitions-2.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/b50111ec-f377-4b7f-9b91-a4019bd5c370.png

ﬂ result = parse_sector buf(disk_dev, sector buf, a5, vl18);
result;
if (result)

* sector_buf->BPB.SectorsPerCluster;

vil = ;

v7 = multiply values(sector_buf->E

to _gen random(a

vl4 = sector_bu

v8 = multiply val

to_gen_random(ad4, & struct->f
turn v15;

Routine for NTFS filesystem
Each file on an NTFS volume is represented by a record in a special file called the master
file table (MFT). In case the MFT becomes corruptible then MFT mirror is read in an attempt
to recover the original MFT, whose first record is identical to the first record of the MFT. MFT
table is the index on which the filesystem relies, having information like where a file resides.
Without MFT, the system will be unable to know were folders and files are, or modification
dates, etc.

Bitmap and LogFile

In an attempt to hinder the recovery, Bitmap and LogFile are overwritten as well for all the
logical drives present on the system. The logical drives are retrieved by
GetLogicalDriveStringsW in this case. These structures are also important when doing
recovery and postmortem investigation. $Bitmap contains information about free and

occupied clusters and $Logfile contains a log of transactions that happened in the filesystem.

28/37

file name[@] = L"$Bitmap";

file_name[1] = L"$LogFile"; /f NTFS transaction journal
j_memset(module_name, @, sizeof(module_name));
_ nAME 3
do
{
3 = ¥yl
*(v2 + jule_name - DISKnAME - 2) = v3;
while { v2 };
for { 1 =8; 1 < 2; ++1)
{ -
5 = file_name[1];
, = lule_name + 2 * lstrlenW(DI AME) - w5}
do
{
= *yhi4;
*(wS + ve - 2) = v7}
}
while { v7);
gen_random_for_retrieval_pointers(module_name, al);
}
return 8;

}
Also user files will be impacted by data destruction. We have discovered that the malware

will overwrite as well almost everything inside C:/Documents and settings. In modern
Windows, Documents and Settings will point to C:/Users. This folder contains users data
folders (for example, My Documents or Desktop are located in these folders). Some files are
skipped in this process, as the ones under APPDATA but in general, every file that is
contained under these folders will be overwritten.

Collecting clusters to erase the whole disk

The final part of the data collection is to get information required to wipe all the occupied
clusters on the disk. To get this information the malware uses
FSCTL_GET_VOLUME_BITMAP IOCTL which gives us information about all the occupied
and free clusters on the disk. The malware traverses all the logical disks and uses
FSCTL_GET_VOLUME_BITMARP to retrieve the bitmap, every bit in the bitmap denotes a
cluster, a value of 1 implying that the cluster is occupied and 0 meaning that the cluster is
free. The bitmap retrieved with the IOCTL is traversed bit by bit and all the occupied clusters
are added to the wiping structure which is described above in the post, one thing to note
here is that malware combines all the contiguous clusters and these contiguous multiple
clusters are denoted by a single chunk structure opposed to earlier usages where one chunk
structure denoted a single cluster.

29/37

& *&vol_bitmap_1->Buffer[4 * (v13 >

PAIR64__ (HIDWORD(v13), v31) + 1)

->Buffer[4 * (__PAIR64_ (Vv15,

(v15, vi6++) + 1

(vl5, v16) < _ SPAIR64__ (v32, v10));

sPerSector;
rsPerClu
Cluster y rSector;
erSector
AIRG4 » v31), BytesPerSector);
ster !

Finally, all occupied clusters will be collected in a elemStr typed structure for its
destruction.

How is this all performed?

Through the entire post its been told that some NTFS properties (like attributes, indexes, etc)
are being used in order to collect data, that will be wiped after. We will like to show an

example of how attackers implemented that functionality and show the level of sophistication.

For that, we will take as example the code responsible in collecting the Windows log files:

.text:BOFF3FEB add esp, 1@h

.text:BBFF3FEE lea eax, [esp+53Bh+wip str]

.text:BeFF3FF2 maw edx, 1

.text:@0FF3FF7 =17 ecx, offset aCWindowsSystem ; ' PN\ \Windows\\System32\\winevt\\L"..
text:B8FF3FFC push eax ; int

.text:@OFF3FFD call add_files_from_folder

Code responsible in collecting Windows log files

After this call, some data structures are filled, containing data regarding physical disk
properties and the folder name itself. Our first reference to the NTFS filesystem is found in
the way that the HANDLE is retrieved. This folder is opened as a NTFS stream:

= CreateFileW(folderPathNTFSf 1, ©xB80000ep0, lu, ©, 3u, ©x2000000u, ©);// (EXAMPLE) \\\\?\\[FOLDER_PATH]::$INDEX_ALLOCATION"
1 = hFolde TFSForm;

if (!hFold TFSF | 1d thi = -1)
F 1 = CreateFileW(hrol

HANDLE to the default directory stream

, @, lu, @, 3u, @x2000800u, 0);

30/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/clusters.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/image-3.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/image-4.png

Eventually, the code will reach the following point. The first call will parse SINDEX_ROOT
attribute, and the functionality is relatively similar and simpler than the second one, where
$INDEX_ALLOCATION attribute is used. Additional information about these NTFS attributes
can be found here. We will assume that the list of elements is long enough to have an
SINDEX_ALLOCATION and we will deep into this call:

parse_NTFS_AND_execute_callback(

nFileIndexlLow, // nFileIndexLow
FileIndexHigh, /{ FileIndexHigh
» S/ NOT USED
&topsStr, // parameter (topStruct)
indexRootExecuting, /f callback
$INDEX_ROOT); // $INDEX_ROOT
/i ex9a
if { flag iNDEX_ALLOC || (dataCounter = topStr.dataCounter) == @)
{
parse_NTFS_AND_execute_callback(
nFileIndexLow, {// nFileIndexLow
FileIndexHigh, // FileIndexHigh
, // NOT USED
&topstr, f// parameter (topStruct)
indexAllocation_Callback_CollectAllfiles,
$INDEX_ALLOCATION); // $INDEX_ALLOCATION
/f exAa

// Used to implement filename allocation for large directories.
NTFS wrapping callback functions
It is important to have in mind the parameters sent for a better understanding of the whole
process. First two parameters (nFileiIndexLow and nFileIndexHigh) are used for calling the
function FESCTL_GET_NTFS_FILE_RECORD, which will retrieve a NTFS record. After some
checks (for example, the magic value), we will pop out in a function that we have called
callback_when_attribute is_found. Note that the first parameter sent to this function will be
the SINDEX_ALLOCATION (0x20) value that was previously sent:

callback when_attribute is found(
¥ ATTRIBUTE_TYPE_CODE TypeCode

]

&fil ->Magic, [/ file_record

»
e
, Call to
¥

| H

= GetProcessHeap();
return HeapFree(1, @, fi);

callback_when_attribute is_found function

What this function will do is to iterate through all NTFS attributes that are part of the record.
To do that, the code will have to find the offset to the first attribute. This offset is just 2 bytes
long, as is relative to the structure. The layout of the header is demonstrated below:

31/37

http://inform.pucp.edu.pe/~inf232/Ntfs/ntfs_doc_v0.5/attributes/
https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_get_ntfs_file_record

Offset | Size | OS | Description
0x00 4 Magic number 'FILE'
0x04 2 Offset to the Update Sequence
0x06 2 Size in words of Update Sequence (S)
0x08 8 $LogFile Sequence Number (LSN)
0x10 2 Sequence number
0x12 2 Hard link count
0x14 & [fosat to the first Attribute]
Dx16 2 Flags
0x18 4 Real size of the FILE record
0x1cC 4 Allocated size of the FILE record
0x20 8 File reference to the base FILE record
0x28 2 Next Attribute Id
0x2A 2 | XP | Align to 4 byte boundary
0x2C 4 | XP | Number of this MFT Record
2 Update Sequence Number (a)
28-2 Update Sequence Array (a)
source

A NTFS File record

Record Header

Attribute

Attribute

Attribute

NTFS record layout

If we still remember the SINDEX_ALLOCATION (0x20), it becomes handy now. Attributes will

will follow this structure:

NTFS RECORD HEADER layout —

start with a specific TypeCode, as $INDEX_ALLOCATION is. So, if one of the attributes
matches the selected type that was required, the first callback function (the one sent steps

before as a parame

ter) will be triggered:

32/37

http://inform.pucp.edu.pe/

FormCode = attribute->FormCode;

if { FormCode ? RecordLength < @x48 : RecordlLength < 8x18)
return;
if (TypeCode == type code to_search) // FOUND DESIRED ATTRIBUTE 4
break;
LOWORD(CurrentAttributeOffset) = RecordlLength + CurrentAttributeOffset;
attribute = {attribute + RecordLength);
if { lattribute)
return;
recordsegment = recordSegment_;
}
if { lFormCode)
{
ValueDffset = attribute->Form.Resident.ValueOffset;
if { lwalueoffset)
return;
Valuelength = attribute->Form.Resident.ValuelLength;
if (!valuelLength)
return;

if (TypeCode |= $ATTRIBUTE_LIST)
f/ if not attribute list

callback(attribute, topStruct_);
return;
1 ¢/ IF_ATTRIBUTE_LIST_THEN_REPARSE_EVERY_ATTRIBUTE

Code showing matching attribute and callback

In the case there is not matching TypeCode but an $ATTRIBUTE_LIST is found, that will
mean that exists more attributes, but these cannot fit into $MFT table. In this rare case, the
malware will continue processing these extra attributes and will call recursively the first
function.

Lets check what this callback will do. Remember that this callback function, in our case is
indexAllocation_Callback_CollectAllfiles. The first step will be recovering the stream that this
attribute points to. As SINDEX_ALLOCATION is an attribute meant for directories, makes
sense this stream being an index array (block indexes):

if { attribute_)
{
handle_Folder NTFS_STREAM = topStruct_ ->handle_Folder_NTFS_STREAM;
if { SetFilePointerEx(
1andle_Folder_NTFS_STREAM,
(topStruct -»structDisk_.BytesPerSector
* (topStruct -»structDisk_.SectorsPerCluster * topStruct -»filesize)),
0,
@)
&& ReadFile(handle_Folder NTFS_STREAM, index] block 1, size, &NumberOfBytesRead, @))

Block Indexes arra y being recovered using raw disk offsets
As this is an index array, these indexes will point to something. This something is, as you
would imagine, NTFS records. In raw disk, these type of indexes look like that:

33/37

49 4E 44 58 28 00 05 00 56 61 18 03 00 00 00 OO0 INDX({...Va......

00 00 OO0 OO OO0 OO0 00 OO0 28 OO0 OO0 00 88 05 00 OO0 [enn unn
Eg8 OF 00 OO0 00 OO0 0O OO0 04 OO0 OO0 OO0 &7 00 TE 00 &...vivvenenn. s
00 OO0 OO0 OO0 OO0 OO0 00 00 OO0 OO0 00 00 00 00 00 00 ..o eeeviennnnnnns
90 08 00 OO OO OO0 01 OO 70 OO SE OO0 Q00 OO0 OO0 OO0 | 5
8F 03 00 OO OO0 OO0 01 OO0 AD 7o AD CF 12 BE DD O1 v.I.=D.
afg T7e AD CF 12 BB DO 01 73 1% 8% 2% 3C ED D7 01 v.l.»D.3.%)<ix,
afg 7e AD CF 12 BB DO ©1 OO OO OO0 OO OO0 OO0 00 0O Y.
00 00 OO0 OO OO0 OO0 00 OO0 OO0 OO0 OO0 10 00 00 00 00 . .eeev e innnnns

Example of an index block found in a raw disk image file
As indexes point to records, all of these records will be sent, recursively, once more to the
initial function. But this time the callback function will be different, also the typecode:

lex_entry=>FileReference.SegmentNumberLowPart;

le exH lex_entry->FileReference.SegmentNumberHighPart;
tNumberLowPart = index_entry-»FileReference.SegmentNumberlLowPart;
Fil exHigh_1 = | IndexHigh;
if (__PAIRe4_ (File exHigh, ex_entry-»FileReference.SegmentNumberLowPart))
{
parse_NTFS_AND execute_callback(
FileIndex . /! nFileIndexlLow $LL477\
ilel xHigh, // FileIndexHigh
gh, [/ NOT USED
pStruct , [/ parameter (topStruct)
dataExecuting,
$DATA) ; [/ $DATA
!/ BxBa

[/ The contents of the file.
callback function call
So this time, every record sent will behave differently. $DATA attributes will be looked for
instead of SINDEX_ALLOCATION ($DATA contains file data). Also, the executed callback
function will be different (hamed now dataExecuting). By using the disk properties that were
sent in the first call combined with information gathered from indexes, this callback will locate
the exact location of the file in disk. The last step for these files, as for all the ones that we
have summarized in this report is being added as a member to a elemStr * structure. The
offsets contained in this structures, as stated, will be overwritten by the malware in the last
steps:

bytes per cluster = vE-»structDisk_.BytesPerCluster;
clusters num = vB-»>structDisk_.maybe_ClusterCounter;
BytesPerSector = vB-»structDisk_.BytesPerSector;
chunk size = multiply wvalues(*&vE->numClusters, *&vi->structDisk_.BytesPerCluster);
physical offset = *&n '._.'_'-f"',"f"_i_;-'l:»‘L-':"l‘.;[ﬁ * ou0 o+ 4]
+ multiply_walues(__SPAIR&4__ (clusters_num, bytes_per_cluster), _ SPAIR&4__ (unk7, filesize));

to_gen_random_Fill_Add_To_diskStruct(

B
=rStruct_->wiperStr_,
physical_offset,
SHIDWORD(phy
chunk_size,
SHIDWORD(chunk_size),
BytesPerSector,

bytes_per_cluster);

ball to the function that will add the file’s offset to a elemStr typed structure, for later data

34/37

destruction

Data overwriting

Finally, after all data is collected, the malware starts overwriting. The elemStr structure is
passed into the function, and all the elements on the linked list are being processed:

collected sectors(elementStr **wip str)

hndl_cntr
'.'li 5

WaitForMultipleObjects(hndl_cntr, Handles, 1, 8x
for (i =8@; 1 < hndl cntr; +i)
oseHandle(Handles[i]);

return hndl cntr != @;

to_overwrite_collected_sectors function overview

The overwriting function uses the installed driver in order to gain the write access to the
sectors. It opens the device, and then walks through all the collected chunks, by their offsets.
ltuses writeFile to fill it with the previously prepared, random data.

35/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/overwrite_loop.png

nsprintfW(FileName

hndl = check_d

hFile = hndl;

if { 'hndl || hndl == -1

zeBuffer;

art
HighPart

ﬁNuTb

dPart + chunkPtr
HighPar
FlushFileBuffer

tEr
hFile

Final detail of data destruction

Example below shows a fragment of a log from our experiments, when we dumped the
content of particular structures during malware execution: first data collection, and then
usage of the filled structures to wipe out the sectors on the disk:

Q100000004 24.46463394 [1924] Hocking the process

©|00000005 24.48650551 [1924] Generating random for retrieval pointer: C:\Windows\system32\Drivers\rhdr elemStr: 0
©|00000006 25.48015808 [1924] Generating random for retrieval pointer: C:\Windows\system32\Drivers\rhdr.sys elemStr: 1450b30
©(00000007 25.49093437 [1924] Generating random for retrieval pointer: C:\Users\tester\Desktop\c_lbcddeef7577%e3caleefb8ff5a64807dbc942bleda2672d77b9£6928429259]1 . exe elemStr: 1450b30
©(00000008 25.61272430 [1924] Overwriting the data, elemStr: 1450b30 id: 0 buffer size: 409€ diskNumber: 0

©(00000009 25.61276436 [1924] elemStr: 1450b30 chunkSize: 1d000 chunk: e51648000

©(00000010 25.61281586 [1924] elemStr: 1450b30 chunkSize: 5000 chunk: 7daa3c000

©(00000011 25.61285400 [1924] elemStr: 1450b30 chunkSize: 3000 chunk: 6adb22000

©100000012 25.61711311 [1924] Cverwriting the data, elemStr: 1450970 id: 1 buffer size: 409& disklNumber: 0

©100000013 25.61728668 [1924] elemStr: 1450970 chunkSize: 14000000 chunk: 84b2b4000

g100000014 25.61732674 [1924] Generating random for sectors (v0) elemStr: 112f3éc

€(00000015 25.61736679 [1924] elemStr: 1450970 chunkSize: 23e4000 chunk: 922018000

©100000016& 25.61748505 [1924] elemStr: 1450970 chunkSize: e€50000 chunk: 8af280000

©100000017 25.61749840 [1924] elemStr: 1450970 chunkSize: a000000 chunk: 898c9c000

€{00000018 25.61765480 [1924] elemStr: 1450970 chunkSize: 10000 chunk: 21e88000

100000019 25.61772346 [1924] elemStr: 1450970 chunkSize: 5000 chunk: 18£d26000

©100000020 25.61774635 [1924] elemStr: 1450970 chunkSize: 1000 chunk: c4718000

©(00000021 25.61778641 [1924] elemStr: 1450970 chunkSize: 1000 chunk: 15£00000

€|00000022 25.61784554 [1924] elemStr: 1450970 chunkSize: 1000 chunk: 100000

glo0000023 25.61788940 [1924] Generating random for sectors (v0) elemStr: 112f3éc

Conclusion

36/37

https://blog.malwarebytes.com/wp-content/uploads/2022/03/overwriting_func.png
https://blog.malwarebytes.com/wp-content/uploads/2022/03/chunks_listing.png

As can be seen, by leveraging legitimate but flawless signed code, the attackers are capable
of bypassing some Windows security mechanisms. This is extremely harmful because user
applications are not meant to have this level of control in kernel space, for security reasons.

Also, we would like to state that recovery in this case is complicated. The attackers first
fragment files on disk, and finally, will overwrite all of these fragments. Even without the last
step (indiscriminate disk trashing), the combination of fragmentation and wiping of required
structures (like $SMFT) would be enough to make recovery almost impossible.

Our final thoughts are about the special focus that cybercriminals put in hiding their tracks.
Maybe, that part is the final stage of a bigger operation. In fact, ESET recently described
other related artifacts here, and they connect them to the same actor and campaign. Being
part of a bigger picture can explain why attackers are so much interested in corrupting files
like $LogFile and Windows events.

Malwarebytes detects this disk wiper as Trojan.HermeticWiper.

Type: Malware
HermeticWip Name: Trojan.HermeticWiper
SIEXE path: C:\Users\@JDesktop\HermeticWiper.exe

37/37

https://www.welivesecurity.com/2022/03/01/isaacwiper-hermeticwizard-wiper-worm-targeting-ukraine/

