
1/13

Syed Hasan March 3, 2022

Threat Hunting for Malicious PowerShell Usage in
Gigasheet

gigasheet.co/post/threat-hunting-for-malicious-powershell-usage-in-gigasheet

Syed Hasan

6 min read

PowerShell exploitation has become one of the most lucrative attack vectors for threat
actors. In this blog, we’ll uncover some of the most common ways to hunt for malicious
PowerShell. Let’s get to operationalizing these threat hunts! �

 

https://www.gigasheet.co/post/threat-hunting-for-malicious-powershell-usage-in-gigasheet


2/13

 

PowerShell: A Threat Actors’ Favorite

 

Ever wonder why PowerShell is the go-to tool for threat actors, after they gain initial access?

 

PowerShell is a Microsoft-developed, cross-platform utility, most extensively deployed on
Windows endpoints and servers. It is often the default choice used to automate tedious
tasks, configurations, and interfacing with the Windows operating system. As such, you can
imagine how deeply rooted and pervasive it is on the machine.

 

With its own scripting language, command-line shell, and ability to hide in plain sight,
Powershell in the wrong hands leads to very destructive outcomes, as does happen today.
PowerShell is a favorite amongst several threat actors, the likes of which include HAFNIUM,
APT38, APT33, Bazar, and others.

 

Hunting PowerShell: Where are the Payloads?

 



3/13

Let’s kick off the juicy part of the blog. I’ve got several hunt use-cases which can easily be
operationalized to detect PowerShell baddies in a Windows-based infrastructure. Before we
discuss the hunts, let’s quickly ingest our logs to Gigasheet.

 

Uploading PowerShell Logs to Gigasheet

 

If enhanced logging is enabled on Windows-based systems, PowerShell logs events in three
log channels:

Windows PowerShell

Microsoft-Windows-PowerShell Operational

Microsoft-Windows-PowerShell Admin

You can fetch these log files from the folder: C:\Windows\System32\winevt\Logs\

 

Gigasheet can easily handle native evtx (event)log files. Simply log in, head over to the Your
Files page, and click on Upload. Drag and drop your log files, however large they are, and let
Gigasheet crunch the data for you.

 

https://www.gigasheet.co/post/online-evtx-parser-and-viewer


4/13

Fun Fact: Gigasheet can handle up to a billion rows without breaking a sweat. Care to
challenge us? Go ahead!

 

PowerShell Downgrade Attacks

 

Isn’t PowerShell a great tool for offensive operations? Well, it does a great job at logging
each operation as well. But there’s a little catch; these security features need to be enabled
and are only available in versions above 5. As such, threat actors love to downgrade
PowerShell and take a toll on the system by subverting all defenses.

 

But could we really not detect PowerShell if it was downgraded? Well, we can. Yes, the
script-block logging and transcription are not going to work anymore but the default
Windows PowerShell channel still logs a bit of information for us to detect suspicious
activity.

 

We’re particularly interested in the EngineVersion field which logs the PS engine which was
used to execute the command from the user. A value of 2 (or below 5) are of interest as they
can indicate execution using a downgrade.

 

Double-click the recently uploaded PowerShell log file and let’s start by filtering for the value:
EngineVersion=2. Whew, out of ~17 thousand rows, we get just 33 results. That’s excellent
noise reduction. But the problem is - this version of PowerShell doesn't log anything beyond
the engine version. So what can we do here?

Well, you could pivot from the Windows PowerShell log channel to the Security log channel.
Execution of PowerShell, regardless of the version, is likely going to log an event if you’ve
got process command-line logging enabled. Simply fetch the date and time, ingest Security
logs into Gigasheet, and run a comparison against time.

 



5/13

Here’s an example search against time. See how the -version 2 flag is used to downgrade
PowerShell and later, the ls command is executed to list the directory.

 

Note: If you’re having trouble taking note of the fields’ long name, simply rename them to
something meaningful. Gigasheet allows you to take full control of your data once you’ve
uploaded it!

 

Obfuscated Commands

 

PowerShell has in-built support for encoding and compressing data. Obfuscation of this kind
can greatly help attackers deliver payload across the network without ringing alarm bells.
However, scripting languages like PowerShell make it just as easy to detect these
commands!

 

Let’s start off easy. Look for the -EncodedCommand parameter or variations of it to detect
any base-64 encoded commands. Mind you - there are hundreds of variations which you can
use to hunt for this very parameter. Here’s a handy regular expression from the fellows at
Unit42:

 

\-[Ee^]{1,2}[NnCcOoDdEeMmAa^]+ [A-Za-z0-9+/=]{5,}



6/13

 

Credits: Unit42

 

We can search for these commands by using the Search in FIles feature in Gigasheet.
Alternatively, we can filter on the same using the contains operator. As a result of our filters,
we get just 50 rows to analyze. On the right - you can see an open row with an encoded
command as part of the PowerShell process. It decodes to whoami which is a common
command used for reconnaissance.

 

 

Though there’s one other way you can detect encoded commands in Gigasheet! Simply use
the Character Count feature and sort the rows by size to see what rows rank the highest.
Outliers are where you’re likely going to see encoded commands since they’re abnormally
longer in length.

 

https://unit42.paloaltonetworks.com/unit42-pulling-back-the-curtains-on-encodedcommand-powershell-attacks/


7/13

 

Notice the length of the EventData field. Let’s run a few aggregations against the column
now. We’ll start off by grouping the data against the EventID field. You can do so by right-
clicking on the column and pressing Group.



8/13

 

 

How about a quick minimum and maximum aggregation on the length column from the
Character Count function? Group the data using a field - I’ll be using the EventID field. Once
done, click the arrow by the Length field to select your desired aggregation. I’ll be choosing
the min and max aggregations for a quick comparison.

See how the minimum value is close to ~300. Yet the maximum values touch ~2700. Clearly,
there are outliers which we might want to investigate.

 



9/13

 

 



10/13

Open up an event ID of your interest (say 400), and let’s sort the EventData (Length) field in
descending order. See how the text field is filled with lots of junk data. Reading the entire
command, we can see it has the -e flag to execute encoded commands. Other malware
samples might also include the GZipStream or MemoryStreamcalls for in-memory
execution or compressed streams of data.

 

 

We can also continue our analysis by decoding this data using a tool like Cyberchef. There’s
the payload in plain-text. Follow-up to this would be analyzing the decoded PowerShell
payload, extracting IoCs, and taking action.

 

Fileless Malware

 



11/13

PowerShell is also preferred by threat actors for its ability to execute binaries (called
assemblies in PS) in-memory. Leaving no trace on disk, the only artifacts left behind are logs
- which if disabled can render a visibility gap for forensic analysts.

 

Invocation of functions like Invoke-Expression and System.Reflection.Assembly (Load)
are good indicators of in-memory execution. Apart from function calls, we can also look for
web requests to retrieve resources which might later be piped into the calls we previously
discussed. GitHub hosts one of the largest corpus of red-team scripts which are also utilized
by threat groups to compromise systems. As such, we can also use requests to
*.githubusercontent.com* as an indicator of suspicious activity.

 

Let’s use this information to supercharge our PowerShell hunt.

 

Filtering on githubusercontent, we get just ~400 events. That’s a bit noisy but there’s a
great chance they’re all suspicious.It’d be even more intriguing to see these logs if your
organization blocked traffic to GitHub yet this log popped up. Although the execution
would’ve likely failed, you’re still witnessing a log from an ongoing compromise.

 

 

For instance, this log shows a reference to Invoke-Mimikatz which is the PowerShell-
equivalent module of the notorious credential dumper, Mimikatz. Successful execution could
mean your credentials have been compromised and need to be changed immediately.

 



12/13

 

But, hey, where’s this actually executed? This log doesn’t show execution. Here’s another log
which shows how the download is enclosed within an Invoke-Expression call to execute the
retrieved code directly into memory - leaving no file on the disk.

 



13/13

You can proceed with your analysis by looking for the ScriptBlock in the PowerShell
Operational log source (if you had the configuration enabled). It logs the entire downloaded
and executed script. However, if a downgrade attack was performed in conjunction, you’re
likely going to be stuck with the command only.

 

Here’s the log for the Invoke-Mimikatz call which has over 139 ScriptBlock events in total:

 

 

What’s Next?

 

I’ve just covered hunting strategies against some of the most commonly used attack
techniques by threat actors. PowerShell isn’t going away any sooner. It’s better this way that
hunters and defenders work on sound strategies to hunt for these threats proactively.

 

That’s it for this article - but you can continue your threat hunts on Gigasheet for free! That’s
right. Use this link to sign up on Gigasheet and get started now!

 

https://beta.gigasheet.co/

