
1/16

Anandeshwar Unnikrishnan March 2, 2022

Technical Analysis of The Hermetic Wiper Malware Used
to Target Ukraine

cloudsek.com/technical-analysis-of-the-hermetic-wiper-malware-used-to-target-ukraine/

Executive Summary

On 23 February 2022, ESET researchers identified a destructive malware, dubbed
“Hermetic Wiper,“ targeting Ukrainian computers and websites.
The Hermetic Wiper malware binary uses a signed digital certificate issued to
“Hermetica Digital Ltd’ and the driver dropped by the malware has a signed digital
certificate issued to “Chengdu Yiwo Tech Development Co Ltd” to circumvent security
checks.
The malware drops a driver, in the Windows Drivers directory, which is part of the
Easeus program with the original filename EPMNTDRV.sys.
It abuses the driver loaded to the target system, to access its hard disk with higher
privileges and to write garbage data into it.
The malware then renders the system useless by corrupting booting data, which forces
the user to reinstall their Operating System.

Technical Analysis of Hermetic Wiper Malware

Leveraging Code-Signing Certificates to Avoid Detection

The malware binary’s signed digital certificate is issued to Hermetica Digital Ltd., a
Cyprus based Gaming development company.
The malware drops a driver in the Windows Drivers directory. The dropped binary’s
signed digital certificate belongs to Chengdu Yiwo Tech Development Co Ltd., the
owner of Easeus Data, which is a Data Backup and Recovery Company.

Signed digital certificates of the binaries

Signed digital certificates of the binaries

Obtaining a Handle to the Current Process Token

The malware begins by obtaining a handle to the current process’ token.

https://cloudsek.com/technical-analysis-of-the-hermetic-wiper-malware-used-to-target-ukraine/

2/16

In Windows, a token is an object that represents the privilege a process holds while
running on the system. A full list of privilege constants can be found here.
The malware uses OpenProcessToken API with the DesiredAccess parameter set to
0x0028 (TOKEN_QUERY 0x0008 | TOKEN_ADJUST_PRIVILEGES 0x0020).
This allows the malware to change privileges assigned to the token.

Using

OpenProcessToken API to change token privileges

Changing Token Privileges

After obtaining access to the current process’ token, with privileges set, the malware
uses LookUpPrivilegeValueW to make sure the current process is assigned following
privileges:

SeShutdownPrivilege
SeBackupPrivilege

The AdjustTokenPrivileges API is used to adjust the current token privileges if the
above listed privileges are not already assigned to the current process.

https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

3/16

Process

of changing token privileges of the current process

Loading the Payload into the System Memory

After granting privileges, the malware dynamically resolves the addresses of following
modules and load them into the current process:

Wow64DisableWow64FsRedirection
Wow64RevertWow64FsRedirection
IsWow64Process

The Wow64DisableWow64FsRedirection and Wow64RevertWow64FsRedirection
modules are responsible for file system redirection on 64 bit versions of Windows. This
comes into play when a 32 bit application runs on 64 bit Windows, where the
%windir%\System32 directory is only reserved for 64 bit applications. However, since
the malware sample is a 32 bit application there is a need for the malware to access
the System32 directory. This is possible via Wow64DisableWow64FsRedirection. It
also helps in accessing the registry without Wow64 redirection.
The IsWow64Process is used to determine whether the specified process is running
under WOW64, or under an Intel64 of x64 processor. This is mainly used to select the
appropriate payload to be dropped.

4/16

The malware loads the modules into the current process
The malware has multiple images of the payload. The malware holds following driver
images for later loading:

DRV_X64
DRV_X86
DRV_XP_X64 for older generations of Windows
DRV_XP_X86 for older generations of Windows

Multiple images of the payload in the malware

Multiple images of the payload in the malware

5/16

The version of the system is enumerated using VerifyVersionInfoW API.

System version enumeration

using VerifyVersionInfoW
The malware selects the payload to be dropped based on the bitness (32/64) in the
resource section of the Portable Executable (PE). After which, the corresponding
image is retrieved from the .rsrc section of the malware and loaded into the system
memory.

Loading the

corresponding payload into the system memory

Dumping a Driver on the Target System

The malware disables CrashDumpEnabled, which dumps the system memory in the
event of a crash. CrashDumpEnabled is enabled by default on Windows 10, and has a
default value of 0x7. The malware changes it to 0x0, thus disabling it.
This is done to evade forensic analysis if something were to go wrong when the driver
is loaded on the target system.

6/16

After disabling the crash dump setting in the registry, the malware prepares to copy an
image of the driver, kept in the .rsrc section of the PE, to the target system.
A pipe \\\\.\\EPMNTDRV\\ is created to perform the transfer of the data.

Creating a pipe to transfer data
The system directory for drivers C:\Windows\system32\drivers is then retrieved via the
GetSystemDirectory API.

7/16

Retrieving the system directory for

drivers

The data is written via the LZOpenFilew and LZCopy APIs. The filename is randomly
generated at runtime, and the name assigned to the file is ttdr.sys.

Writing the data and generating the ttdr.sys file
Now the malware has successfully dumped a driver on the target system.

ttdr.sys dumped on the target system

8/16

Driver Loading and Service Creation

To load a driver on Windows, the process should possess SeLoadDriverPrivilege. The
malware checks for such a privilege in the current process using the
LookupPrivilegeValueW API.
If the process does not have the required privilege, the malware adds it via the
AdjustTokenPrivileges API.

Malware looks for SeLoadDriverPrivilege
After adjusting the privileges, the malware opens Service Control Manager on Windows
to query active services through the ServicesActive database.
It checks for any active services with the name of the dumped driver, which in this case
is ttdr, via the OpenServiceW API.

Checking for any active services with the name ttdr

9/16

If the service does not exist, OpenServiceW API returns
ERROROSERVICE_DOES_NOTEXIST, and then new service is created via
CreateServiceW as shown below

New service is created via CreateServiceW
The StartServiceW API is then used to run the driver on the target system.

Using StartServiceW

API to run the driver on the target system
This can be verified by querying the service control to check if the STATE parameter is
set to “RUNNING.” After this the malware starts interacting with the driver via the
IOControlDevice API, which makes the malware a userland component of the deployed
driver .

Querying the service control

10/16

The symbolic link created for IO communications is verification that the driver has been
successfully loaded on the system.

Symbolic link created for IO communications
If the service is present, then malware gets the service status from Service Control
Manager using the QueryServiceStatus API.
The service configurations are changed, if the service is inactive, via
ChangeServiceConfig API. And the flag SERVICE_DEMAND_START (0x00000003) is
passed as dwStartType value for the ChangeServiceConfig API.

Querying and changing the service configurations

Clean Up Process

As soon as the driver starts running on the target system, it starts the clean up process
by deleting the service entry in the registry, and the driver image in the
C:\Windows\system32\drivers directory.

11/16

Deleting service entry from the registry and driver image
After the clean up process, the malware disables Volume Shadow Copy Service (VSS)
on the system, via Service Control Manager. The VSS service is opened via the
OpenServiceW API to change the configuration of the service later.

Disabling the Volume Shadow Copy Service

A new configuration update is made by passing the 0x00000004 flag
(SERVICE_DISABLED) to ChangeServiceConfigW, thus disabling VSS by force.

12/16

Disabling VSS

The malware makes sure the service has stopped, by passing 0x00000001
(SERVICE_CONTROL_STOP) as the dwControl parameter value.

Making sure the service has stopped

Corrupting the Hard Disk Data

The malware uses the installed driver to read/write hard disk data.
To achieve this, the symbolic link used by the driver (\Device\EPMNTDRV),
communicates via the DeviceIOControl API, by passing IOCTL codes to make the
driver perform a specific task.
The malware then accesses the Master Boot Record via \\\\.\\PhysicalDrive0.
IOCTL codes:

560000 70050

90073 90064

2D1080 90068

700A0

13/16

Accessing \\\\.\\PhysicalDrive0

The data corruption logic distinguishes NTFS and FAT systems and has different
corruption logic for each of the file systems present on the disk.

NTFS corruption logic

Fat corruption logic

The malware parses Master File Record fields such as $bitmap and $logfile and other
NTFS attribute streams such as $DATA, $I30, or $INDEX_ALLOCATION.
Multiple threads are instantiated by the malware to perform various activities. However,
the execution of one of the threads performs InitiateSystemShutdownEx, which is a
privileged activity, as the final damage.

14/16

Performing InitiateSystemShutdownEx as the final damage
Before shutting down the system, the malware enumerates the following directories for
data wiping:

My Documents
Desktop
AppData
Windows Event Logs (C:\Windows\System32\winevt\Logs)

Indicators of Compromise

Malware Binary:
1bc44eef75779e3ca1eefb8ff5a64807dbc942b1e4a2672d77b9f6928d292591
Dropped Driver: 6106653B08F4F72EEAA7F099E7C408A4
3F4A16B29F2F0532B7CE3E7656799125

Author Details

Anandeshwar Unnikrishnan

https://cloudsek.com/author/anadeshwar-unnikrishnan/

15/16

Threat Intelligence Researcher , CloudSEK
Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of
offensive cybersecurity. He is fuelled by his passion for cyber threats in a global context. He
dedicates much of his time on Try Hack Me/ Hack The Box/ Offensive Security Playground.
He believes that “a strong mind starts with a strong body.” When he is not gymming, he finds
time to nurture his passion for teaching. He also likes to travel and experience new cultures.

Deepanjli Paulraj
Lead Cyberintelligence Editor, CloudSEK
Total Posts: 3
Deepanjli is CloudSEK’s Lead Technical Content Writer and Editor. She is a pen wielding
pedant with an insatiable appetite for books, Sudoku, and epistemology. She works on any
and all content at CloudSEK, which includes blogs, reports, product documentation, and
everything in between.

×

Anandeshwar Unnikrishnan
Threat Intelligence Researcher , CloudSEK
Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of
offensive cybersecurity. He is fuelled by his passion for cyber threats in a global context. He
dedicates much of his time on Try Hack Me/ Hack The Box/ Offensive Security Playground.
He believes that “a strong mind starts with a strong body.” When he is not gymming, he finds
time to nurture his passion for teaching. He also likes to travel and experience new cultures.

https://cloudsek.com/
https://cloudsek.com/author/deepanjli-paulraj/
https://cloudsek.com/
https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/

16/16

Latest Posts

https://cloudsek.com/technical-analysis-of-emerging-sophisticated-pandora-ransomware-group/
https://cloudsek.com/malicious-macros-and-zone-identifier-alternate-data-stream-information-bypass/
https://cloudsek.com/technical-analysis-of-the-hermetic-wiper-malware-used-to-target-ukraine/
https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-2/

