Digging into HermeticWiper

4 trellix.com/en-us/about/newsroom/stories/threat-labs/digging-into-hermeticwiper.html

Stories

The latest cybersecurity trends, best practices,
security vulnerabilities, and more

By Max Kersten - March 2, 2022

A special thanks to Marc Elias for his help during my analysis. Additionally, I'd like to commend
all researchers who have publicly shared their initial findings to help incident response teams; |
hope this deep dive contributes to a further understanding of the malware’s inner workings.

On the 23rd of February 2022, the HermeticWiper malware was first observed in Ukraine. The
malware aims to destroy the boot sectors of any (removable) disk on the infected machine, with
the help of a benign partition manager driver. This blog is split up in three main sections: a deep
technical dive into the HermeticWiper sample’s inner workings, a comparison with the recent
WhisperGate wiper, and a brief word about attribution.

Technical analysis

The complete technical analysis is summarised in the flowchart below. Each aspect will be
explained in detail, with accompanying segments of code to further clarify the malware’s inner
workings.

1/11

https://www.trellix.com/en-us/about/newsroom/stories/threat-labs/digging-into-hermeticwiper.html
https://www.trellix.com/en-us/about/newsroom/stories/contributors/max-kersten.html
https://www.trellix.com/en-us/about/newsroom/stories/contributors/marc-elias.html

: Cwerwrite the boot
Start .| Disable the creation i D'EEEDLEEEIEFFSGFUE:MEU sector with random
"l of crash dumps =] data for the first 100
elements :
) drives
Mon-Domain
Controller
¥ v v machines ¥
Delete the
Determine future compressad driver Owerwrite the boot Wipe files from other
sleep time and the related sector important folders
service
IT the victim's
¥ ¥ machine is a ¥
Domain
o Stop the Volume Controller -
Request privileges Siadow Copy sevits = Reboot
v hd
Drop, decompress, Set an internal

and load the benign

driver shutdown timer

The analysed sample’s hashes can be found in the table below.

SHA-1 61b25d11392172e587d8da3045812a66c3385451
SHA-256 1bc44eef75779e3caleefb8ff5a64807dbc942b1e4a2672d77b9f6928d292591

MD-5 3f4a16b29f2f0532b7ce3e7656799125

Benign software and certificates

Even though there are multiple stages, the malware starts out as a single signed executable.
The certificate which was used to sign the malware originates from Hermetica Digital Ltd, a
Cyprus based company who seems to be another victim in this ordeal, as the company’s owner
denies any involvement, per Reuters. The usage of certificates in malware is not new, and solely
serves to mask the file’s malicious intent.

Start-up checks and privileges

The first check within the wiper, is the verification of the number of command-line arguments.
Later on, a sleep is called for a given number of seconds. If a valid integer is provided as a
command-line argument, that value is used. Otherwise, a hardcoded value is used.

To avoid execution in an analysis environment, the malware verifies if its name starts with a “c”.
When downloading malware from sample sharing sites, the file name is often equal to the hash
of the file using a common algorithm, such as MD-5, SHA-1, or SHA-256. The (lack of)
capitalisation of the character is irrelevant, as the call to CharLowerW ensures the comparison is

[Pl

made using a lower-case “c”, as can be seen in the screenshot below.

2/11

https://www.reuters.com/world/europe/cyprus-games-writer-denies-links-malware-found-before-russian-invasion-2022-02-24/

Tea eax,dword ptr ss:[fesp+30CH

push eax

€811 dword ptr ds:[<&CharlLowerw:=]

movzx eax,word ptr ss:jffesp+30C])

mov esi,dword ptr ds: [<&lookupPrivilegevaluew:>]
mov dword ptr ss:[flespt+eax S—:CS},GEDDTT

mov dword ptr ss:lesp+reax*8-2C4f,720050

The numeric value of this character, stored in EAX, is used to calculate the offset on the stack to
place the missing wide characters to complete the “SeShutdownPrivilege” wide string. The two
mov-instructions in the image place the missing wide characters at the calculated offset. The
image below shows the original wide string.

Address | Hex ASCII
012FF8F4|C6 2B D8 01|00 OO0 0D OO(14 OO0 OD OD|53 00 65 00 (AHB. .« v v v nuas 5.8.
012FF204 |53 00 &8 00| Z Fi 64 00 6F DO|(9A 02 00 00| 8.h.u.t.d.
D12FF914 |00 00 0D OO|69 OO0 76 00|69 00D 6C DO|(65 00 67 OO7.v.1. i
D1Z2FF924 |65 00 00 OO|0D OO 0D OO(00 OO 0D OOD|O0 OO OO DO B . s s camnnnnnsas

Note how “wnPr” are missing in the middle of the wide g;tring. Once the four wide characters are
inserted, the string is completed, as can be seen below.

Address | Hex ASCII |
0D12FFBF4|C6 2B D8 01 (00 00 OO O0O(14 OD OO0 OO(53 00 65 OO AHD. o v v v uwuw 5.8.
D12FF904 (83 00 68 00|75 00 74 00|64 00 6F 00|77 00 6E 0O(S.h.u.t.d.o.w.n.
O12FF914 (50 00 72 00|69 00 76 DO|69 DO 6C 00|65 0D &7 OO(P.r.i.v.i.1.e.9.

012FF924 |65 00 00 00|00 0D OD OO|0D OD DO QD|O0 DO 0D OD| €. venanesnannns

Up next is the check for both the above-mentioned BFi\;ifege, as well as “SeBackupPrivilege”.
The two privileges are then requested using AdjustTokenPrivileges. Regardless of the request’s
success, the malware’s execution continues. The difference the privileges make will be clear
later on.

Loading the benign driver

The malware then calls a function to drop and load the afore-mentioned benign driver, originally
created by EaseUS for its partition manager, and signed by CHENGDU YIWO Tech
Development Co. Ltd., the creator of said software. Note that the driver is benign and misused
by the malware.

The driver is embedded (compressed using the MSLZ format) into the wiper’s resources, where
it contains four versions, pending on the victim’s operating system and CPU bit-ness. The driver
versions are for Windows XP, both 32-bits and 64-bits, and for any later Windows version, also
in both 32-bit and 64-bit. The image below shows the corresponding code.

3/11

https://www.easeus.com/contact.htm

if (BVar5 = 0} {

IVaré = GetLastError();

if (DVar® '= ERROR OLD WIN VERSION) |

return 0;

resourceName = L"DEV X647";

The wiper first checks the Windows version, which is later used to load the corresponding
compressed driver from its resources. The malware then disables the creation of memory

dumps when the system crashes. It does this by setting the registry key at
“‘HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CrashControl\CrashDumpEnabled”
to 0, as can be screen in the screenshot below.

1t = RegOpenKeyW ((HEEY) HEEY LOCRI. MRCHINE,
L"SYSTEM\\CurrentControlSet\\Controli\CrashControl"™, sphkRssult) ;
if (result = ERROR SUCCESS) {
local 10 = ([LPWSIR)resulc;
/¥ local 10 is. equal to the last error;, which is 0 when the eall is successful
i
RegietValueExH (phkBResult, L"CrashDumpEnabled” , RESERVED ARG, BREG DWORD, (BYTE *)&local 10,4);
BegCloseRey (chkBesult) ;
}

The respective compressed driver is then loaded from the resources, and written to
“C:\WINDOWS\system32\drivers\[XX]dr”, where “[XX]” are two randomly generated lower case
characters from the Latin alphabet, ranging “a” through “z”, as can be seen in the image below.

4/11

= 0x7a0079;

[IWars = GetCurrentProcesald();

War3d = [ulonglong) (DVarZ + 1) % OxXELfl;

local ld47:
local 38c[iVard + 1] = u alphebet[(uVerld + ((iVarlld + uVarld) % 0xfffl] * 0xl10000) % Oxlal:
StrCatBuffW{local 3Bc + iVerd + 1, (LPCWSIR)s&su_drv,4);
local 330[1Vard4] = 0;
BVars = PathFileExistsW((local 38c);
} while [BVars I= 0):

The compressed file is then read from the disk, decompressed, and written to disk using the
same file name, with “.sys” added to it.

Next, the wiper attempts to acquires the “SelLoadDriverPrivilege” privilege. If this permission is
not granted, the malware terminates itself. An attempt is then made to get a handle to the
benign driver, which is accessible via “\\EPMNTDRV\” with a given unsigned integer. If this is
possible, there is no need to repeat the driver loading procedure. The snippet below shows the
relevant code.

wnsprintfW (u_drivelames, 0xl104, L™\ ANEEMNTDEV A\ 0™, 0) 7
handle = GetDiskHandle (NULL,u driveNams,HNULL) ;
if ((handle != NOULL) && (handle != (HANDLE)Oxffffffff)) |
CloseHandle (handle);
return 1;
}

If the driver cannot be accessed, meaning the above failed, it is then loaded. If the service state
is disabled, the wiper will check up to four times if the service is running, with a one second
sleep in-between to allow the service to start. The image below shows the corresponding code.

5/11

— =

= | aid
[B e

;35
SERVICE DEMLND ST
NULL, NULL, NULL, HOLL, RULL) :

r = GetLastError();
iceHandles = CloseSsrviceHandles exref;

goto LAB close SCManager set error and return;

iV Zeroes the entire SERVICE STAIUS struct *f
viceStatus.dwWaitHint = 0;

pCloaseServiceHandle = ClosseServiceHandls exref;
CloseServiceHandle (hSsrvics);
goto LAB close SCManager set_error and return;

g = (uint) (servicsStatus.dwCurrentState = SERVICE DISLBLED) 7

Upon the successful creation of the service, the compressed driver is removed from the disk,
together with the service’s corresponding registry key, and its values. The screenshot below
shows the service’s values in the registry. Note that the service’s name, which is equal to the
driver’s name, is “zddr” in the analysis.

WSYSTEMN CurrentControlSeth Services\zddr

|| Mame Type Data
ab{Default) : REG_SZ (value not set)
ab] DisplayMame REG_SZ zddr
_?5'_6] ErrorControl REG_DWORD e OOO0000T (1)
I _:‘f] ImagePath REG_EXPAMND_SZ VR CAWINDOWS\system 32\ Drivers\zddr.sys
; _?5'9 Start REG_DWORD Cee 00000003 (3)
We| Type REG_DWORD Cee00DDODDT (1)

6/11

Disabling Windows internals

Following up on that, the Volume Shadow Copy service (abbreviated as “vss”) is stopped. This
service creates incremental back-ups over time, and is often disabled by ransomware for the
same reason as the wiper disables it: discontinuing the internal back-up system of Windows.
The relevant code can be found in the excerpt below.

pHandles = OpenSCManagerW (NULL, L"Servicesfctive™,5C MLWAGER ALL ACCESS) :
if ((SC_HANDLE)pHandls = NULL) [

returnValue = [YpGetlastError) () :

Service CpenServiceW ((SC_HANDLE)pHandls, (LECWSTR) su_wvss,

MANAGER MODIFY BOOT CONFIG 5C MRNRGER CHREATE SER E)

ControlService(hSsrvice, SEREVICE COWTBOL STOP,NULL):
pCloseServiceHandles = CloseServi

flcaESE:viCEHandle1aif;“i:eﬁ:

]

(*pCloseServiceHandls) () :
The wiper then recursively overwrites files located at “C:\System Volume Information”, after
which attempts to forcefully and instantly shut the system down via a thread, which first sleeps
for a given number of seconds. Note that the “SeShutdownPrivilege” is required to call the
shutdown function. This privilege is only obtained if the first character of the malware’s file name
is a “c”, regardless of the casing, as explained in the start of the technical analysis. The
screenshot below shows the corresponding code.

7/11

DWORD SleephndReboot (DWOED *sleepTime)

DWORD lastError;

Sleep(*sleeplime);
f* InitiateSystemShutdownExW (self, no_message, no_timecut, force apps_close,
reboot_after shutdown, reasons) */
result = InitiateSystemShutdownExW

FLAG PLANNED | SHIDN RERSCON MRJOR OPERATINGSYSTEM | SHIDN RE

if (result '= 0) |
astError GetLastError();
return lastError;

}

Further changes to the registry are then made, where “ShowCompColor” and “ShowlInfoTip”
(both located at

‘HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Advanced”)

are set to zero, for each user. These registry keys define if compressed NTFS files should be
displayed in colour, and if tooltips should be shown for folder and desktop items, respectively.
The screenshot below shows the corresponding code.

MITTT WOTT R T. YO T WITT

CUNT, MUl INU L, MU UL L INULLals,

WOULL . NOLL) =

D Leds g MU] £

if ((subEeyCount = 0) && ([subEeyIndex = 0, subEeyCount = 0)) {

yilameLength = OxfL;
result = (HEEY)RegEnumKeyExW [(HEEY) BEEY USERS, subKeyIndex, keyHame, ekeyH

NULL, NULL) 3

/¥ Beturning =ero 18 a successful ecall Y/

USERS, keyNams, ehKey), result = HULI

lus = ReglpenKeyW (hE=v,

L"Software\ \Microgoft\\Hindows\\CurrentVersion\\Explorer\\Advanced

EregistrvEey) s
/% ERBOR_S5UCCESS equala O A/
Iue = ERROB SUCCESS) (

curnvalue

RegSetValueExW({ragistryE

8/11

Wiping data

The malware then checks if the machine where it is executing on, is a Domain Controller. The
folder “C:\Windows\SYSVOL”, which only exists on Domain Controllers and contains the
policies, is checked for its existence, and if it is a folder. The excerpt below shows the check.

/¥ Only present on DCas */

returnValus = GetFileAttributesW [L"C:\\Windows\\S¥YSVOL") ;
/¥ " Dx10 '= 0™ checks if the second bit is true, which defines if the given

file' is a folder */

if ((returnValues != INVALID FILE ATTRTBUTES) && ((returnValue & 0x10) = 0}) {
F* 3 minote wait %/
/% WABNING: Subroutine does not return */
/¥ Exit if runmning on a DC */

ExitProcess(0);

}
If this is true, a three-minute wait is entered, allowing the threaded overwriting of the boot
sectors of any attached removable or fixed medium, as can be seen in the image below.

if {drive geometry ex != NULL) {

sturnValus = DeviceloControl (hDevice, IOCT

&iocontrol

/* Needs to be a successful call to fetch the drive type, which is removable or
Fixed */

x.Geometry.MediaType = BemovableMedia &&
x.Geometry.MediaType '= FizxedMedia)))) {

AB close_handle return:
CloseHandle (hDevice) 7

return NULL;
}
The data which is used to overwrite the boot sector is random data, which is generated via
Windows Cryptography API calls, unless an error occurs. If an error occurs, the data is

overwritten with zeroes. The image below contains an excerpt of the random data generation
function.

result = CrypticquireContextW (ehProv, NULL, NULL, FROV_ RS54 FULL,CRYFI VERIFYCONTEXT CR

/¥ Succeas ia a non-zerc return value %/
if (result = ERROR) |
result = CryptEGenRandom(hProv, (DWORD) randomBufferlength, (BYIE *)cryptGenRa
if (result = ERROR) {

/* Fill the giwven buffer with zeros %/

for (; randomBufferLength = NULL; randomBufferlength = (int *] {[int)randomBufferLength — 1)
|
* [BYTE *)cryp
1
}
CryptReleaseContext (hFrov, RESERVED FLAG);

9/11

Once the three-minute wait is over, the malware shuts itself down. As such, further details within
the technical analysis section are only for machines that are not a Domain Controller.

The wiper then iterates over the first 100 attached drives, and overwrites the boot sector of each
attached removable or fixed medium.

éc [-
IterateDrivesAndEncryptFiles (DetectAndEncryptBo
i =1 41>
} while (i < 0x65}):
The malware then recursively overwrites specific files in “C:\Documents and Settings” and
“C:\Windows\System32\winevt\Logs”. The goal here is to wipe data and minimise the amount of

usable forensic artifacts.

tSector,i,&globalStruct);

Yet another wiper?

There is more to these two campaigns than their shared destructive nature. Needless to say,

wipers have been used in various forms, and they are here to stay. Some infamous examples
are, in no apparent order: WannaCry, NotPetya, Shamoon, and WhisperGate. Note that even
though some of the mentioned samples are classified as ransomware, but the way they were
used made them wipers instead.

The WhisperGate campaign targeted the boot record of the affected device, much like the
Hermetic wiper does, albeit less thorough. The Hermetic wiper goes over the first hundred
physical drives and ruins the boot record if it fits the predefined criteria, as mentioned above.

Additionally, the usage of a legitimate driver to wipe data differs wildly from the WhisperGate
campaign. Whether the driver is used as an attempt to fly under the radar of security products or
simply a preference of the wiper’s creator, it's an effective way to achieve the actor’s goals.

A major difference between the two, is the quality of the code. Whereas WhisperGate’s boot
record replacement was shoddy at best, the Hermetic wiper’s code base shows an in-depth
understanding of volume formats and their handling. Even though there’s a noticeable difference
in code quality, it is clear that both campaigns have had a disastrous effect on all systems they
were executed on.

Victimology and Attribution

The majority of the reported victims (both publicly and in our telemetry) are located in Ukraine,
dating back to the 23rd of February 2022. Some victims have also been observed in other
countries, but due to the limited amount, those are likely foreign office for Ukrainian companies.

Per our telemetry, there is an overlap of Ukrainian victims who were victim in both WhisperGate
and this campaign. The sectors of the victims seem to align with the military strategic goals of an
aggressor: disruption in the communication of an opponent in war time.

10/11

Given the fact that the sample’s code is newly created, there is no overlap with other samples
that have been found in other malware families. One can argue that the malware campaign’s
timing, just before Russia’s invasion into Ukraine, is more than a coincidence. Based on the
destructive nature of the malware campaign, while also taking the campaign’s timing into
account, we attribute this campaign with medium confidence to a pro-Russian actor.

Conclusion

Wiper campaigns have been used in the past and have proven to be effective. The usage of
benign software for a malicious purpose, often referred to as dual-use, is common and widely
adopted. Dual-use software can be found in the form of living-of-the-land binaries, or self-
contained benign files. The HermeticWiper does the latter with the embedded driver, as the boot
sector altering actions are performed by a benign driver, in-line with the expected behaviour of
said program.

It comes as no surprise that the digital domain is actively used during war times, given the ever-
increasing digitalisation of the world around us, as the pandemic has clearly shown. The pro-
Russian targeting of the victims, along with the timing, shows the direct impact the digital
domain has in our lives.

11/11

