
1/10

March 2, 2022

CONTI’S SOURCE CODE: DEEP-DIVE INTO
cluster25.io/2022/03/02/contis-source-code-deep-dive-into/

 INTRODUCTION

https://cluster25.io/2022/03/02/contis-source-code-deep-dive-into/

2/10

On 25.02.2022 cybercrime group Conti published the following statement on their shame
blog:

The post was redacted several hours later with another one having more neutral tones,
condemning the war and disaffiliating itself with the government while however emphasizing
sentiments against the west. The post retained its threats of retaliation against critical
infrastructure belonging to any Russia aggressor.

After that on 28.02.2022, likely one of the Conti members (or just a Ukrainian security
researcher) published a first archive with internal valuable data and information belonging to
the whole collective. The action was probably a direct consequence of such a clear-cut
stance by the group on the current situation between Russia and Ukraine. Among this
material there also appears to be an archive containing the source code of their ransomware
of which we report a preliminary analysis.

INSIGHTS

3/10

ContiLocker is a ransomware developed by the Conti Ransomware Gang, a Russian-
speaking criminal collective with suspected links with Russian security agencies. The project
is developed in C++ on a Visual Studio 2015 version with Windows XP Nplatform toolset
(v140_xp). The specified destination platform is the 10.0 (Windows10). The project structure
is organized in different subfolder, where each one handle a specific module of the
ransomware (like the “locker” folder for the encryption operations).

For specific operations (like the encryption mechanism) this uses different concurrent threads
handled by the CreateIoCompletitionPort Windows API and different queues that are
handled by the GetQueuedCompletitionStatus and PostQueuedCompletitionStatus.

The WinMain function (main.cpp) starts with the dynamic resolution of the LoadLibraryA
API through a manual inspection of the imported kernel32.dll (a manual implementation of
the GetProcAddress API).

After that, the “API” module is invoked to execute an anti-DBI/anti-sandbox technique with
the purpose of disable all the possible hooking’s on known DLLs. In fact, the following DLLs
are loaded through the just resolved LoadLibraryA API:

kernel32.dll
ws2_32.dll
advapi32.dll
ntdll.dll
rstrtmgr.dll
ole32.dll
oleaut32.dll
netapi32.dll
iphlpapi.dll
shlwapi.dll
shell32.dll

For each loaded DLL, the CreateFileMappingW and the MapViewOfFile are invoked to
access the mapped view into the address space of the calling process.

4/10

This view is used to manually access the NT header and the inner export directory. From the
export directory each address of the exported functions is extracted, and the first bytes of the
exported function are checked to identify a possible JMP/NOP/RET instruction that identifies
an external hook.

If the current function is hooked, the VirtualProtect and the RtlCopyMemory API are
invoked to overwrite the first bytes of the hooked function. Proceeding with the WinMain
execution, a mutex called “kjsidugidf99439” is created to check for possible concurrent
executions of the same payload. If another thread has the ownership of the mutex, the
execution terminates here.

After that, the command lines arguments are checked from the GetCommandLineW API.

This ransomware accepts the following command line arguments:

-h: specifies a file that contains the IPv4 of hosts to scan for network/shares encryption
(separated by \n\r);
-p: specifies a file that contains the system path to scan for file encryption (separated
by \n\r);
-m: specifies the encryption mode
“all”: encrypt both local and network files
“local”: encrypt only local files
“net”: encrypt only network files
“backups”: not implemented
-log: if contains the value “enabled”, logs the ransomware actions/errors on the local
file C:\\ CONTI_LOG.txt

5/10

Afterwards, the GetNativeSystemInfo API is invoked to extract the number of processors
and the “threadpool” module is used to instantiate number_of_processors * 2 threads
(both for local and/or network encryption, based on the specified flags).

Each thread allocates its own buffer for the upcoming encryption and initialize its own
cryptography context through the CryptAcquireContextA API and an RSA public key.

Then, each thread waits in an infinite loop for a task in the TaskList queue (shared by each
thread and accessed by the EnterCriticalSection API). In case a new task is available, the
filename to encrypt is extracted from the task and, if the filename

 corresponds to “stopmarker”, the thread execution is concluded.

In any other case, the “locker” module is invoked to encrypt the current file.

The encryption routine for a specific file starts with a random key generation (using the
CryptGetRandom API) of a 32-bytes key and another random generation of an 8-bytes IV.

Subsequently, the random key and the random IV are stored in a custom FIleInfo structure
and the random key is encrypted using the RSA key previously decoded.

Before the encryption phase if the restart manager DLL is loaded (rstrtmgr.dll), the
RmStartSession, RmGetList and RmShutdown APIs are invoked to terminate each
application that are using this specific resource or have a handle open on that

6/10

resource.

Then, based on the file extension, the file content is full encrypted or partially encrypted
(20% encryption). In particular, the CheckForDataBases method is invoked to check for a
possible full encryption against the following extensions:

.4dd, .4dl, .accdb, .accdc, .accde, .accdr, .accdt, .accft, .adb, .ade, .adf, .adp, .arc, .ora,

.alf, .ask, .btr, .bdf, .cat, .cdb, .ckp, .cma, .cpd, .dacpac, .dad, .dadiagrams, .daschema,

.db, .db-shm, .db-wal, .db3, .dbc, .dbf, .dbs, .dbt, .dbv, .dbx, .dcb, .dct, .dcx, .ddl, .dlis,

.dp1, .dqy, .dsk, .dsn, .dtsx, .dxl, .eco, .ecx, .edb, .epim, .exb, .fcd, .fdb, .fic, .fmp,

.fmp12, .fmpsl, .fol, .fp3, .fp4, .fp5, .fp7, .fpt, .frm, .gdb, .grdb, .gwi, .hdb, .his, .ib, .idb,

.ihx, .itdb, .itw, .jet, .jtx, .kdb, .kexi, .kexic, .kexis, .lgc, .lwx, .maf, .maq, .mar, .mas.mav,

.mdb, .mdf, .mpd, .mrg, .mud, .mwb, .myd, .ndf, .nnt, .nrmlib, .ns2, .ns3,.ns4, .nsf, .nv,

.nv2, .nwdb, .nyf, .odb, .ogy, .orx, .owc, .p96, .p97, .pan, .pdb, .p dm, .pnz, .qry, .qvd,

.rbf, .rctd, .rod, .rodx, .rpd, .rsd, .sas7bdat, .sbf, .scx, .sdb, .sdc, .sdf, .sis, .spg, .sql,

.sqlite, .sqlite3, .sqlitedb, .te, .temx, .tmd, .tps, .trc, .trm, .udb, .udl, .usr, .v12, .vis, .vpd,

.vvv, .wdb, .wmdb, .wrk, .xdb, .xld, .xmlff, .abcddb, .abs, .abx, .accdw, .adn, .db2, .fm5,

.hjt, .icg, .icr, .kdb, .lut, .maw, .mdn, .mdt

Otherwise, the method CheckForVirtualMachines method is invoked to check for a possible
20% partial encryption ((file_size / 100) * 7) against the following extensions:

vdi, .vhd, .vmdk, .pvm, .vmem, .vmsn, .vmsd, .nvram, .vmx, .raw, .qcow2, .subvol, .bin,
.vsv, .avhd, .vmrs, .vhdx, .avdx, .vmcx, .iso

In other cases, the following pattern is followed:

If the file size is lower than 1,04 GB: perform a full encryption.
If the file size is between 1,04 GB and 5,24 GB: perform a header encryption (encrypt
only the first 1048576 bytes).

7/10

Otherwise perform a 50% partial encryption ((file_size / 100) * 100).

After chosen the encryption method, the first bytes of the file content are overwritten (before
the encryption) with the information about the encryption mode and the key used for
encryption. Then, the file content is encrypted using the random key previously encrypted
with RSA and the file extension is changed to .EXTEN.

Now let’s see how these threads are invoked from the enumeration methods returning to the
WinMain execution.

First, a COM bypass is used to delete the shadow copies from the Windows Management
Instrumentation (WMI).

In details:

1. The COM object is initialized through the CoInitializeEx API.
2. The COM security levels are changed trough the CoInitializeSecurity API and the

parameter cAuthSvc equals to -1 in order to disable the authentication.
3. The CoCreateInstance API is used to locate the WMI trough the CLSID

“CLSID_WbemLocator”.
4. The WMI and the WQL (WMI Query Language) are accessed through the

IWbemLocator::ConnectServer method.
5. The WMI proxy security levels are changed through the CoSetProxyBlanket API in

order to set the flag RPC_C_AUTHZ_NONE and avoid the authentication.
6. The “SELECT * FROM Win32_ShadowCopy” query is invoked to identify the shadow

copies ID’s and a command-line execution is used to delete each shadow copy
“cmd.exe /c C:\\Windows\\System32\\wbem\\WMIC.exe shadowcopy where
\”ID=’%s’\” delete”

Finally, the enumeration process starts. First, the file-system paths specified through the -p
flag are iterated and for each path the ransomware note (R3ADM3.txt, not available in this
leaked version) is dropped into the specified directory. After that, the APIs FindFirstFileW
and FindNextFileW are used to iterate inside each directory ignoring the special files (like “.”
or “..”).

8/10

The malware uses a whitelist for both directories and files to avoid the encryption of
unnecessary data. The following directories names and file names are avoided during the
enumeration process:

Directories: “tmp”, “winnt”, “temp”, “thumb”, “$Recycle.Bin”, “$RECYCLE.BIN”, “System
Volume Information”, “Boot”, “Windows”, “Trend Micro”
Files: “.exe”, “.dll”, “.lnk”, “.sys”, “.msi”, “R3ADM3.txt”, “CONTI_LOG.txt”

If the file to encrypt is a directory, the described process is repeated recursively for all the
subdirectories and subfiles. Finally, the file to encrypt is passed to the first available thread
for the encryption process populating the TaskList queue. The following enumeration
inspects all the logical drives of the infected system.

In fact, in addition to the paths specified by the -p flag, the GetLogicalDriveStringsW API is
used to obtain the drives list. Then, for each logical drive, the root path is extracted, and the
previous process is repeated for each subdirectory and subfiles.

The last enumeration process is used to enumerate the shares of the infected Windows
system. In fact, the NetShareEnum API is used to retrieve information about each shared
resource. For each resource, if the resource represents a disk drive, a special share (e.g.,
$IPC communications, ADMIN$ remote administrations, administrative shares) or a
temporary share the share path is extracted (e.g., \\\\$IP\\$SHARE_NAME).

Then, each share path is used as a directory for the previously described process of
directories and files encryption.

9/10

Additionally to the share enumeration, this ransomware presents a multi-thread component
to scan for other IP’s in the reachable networks for a destructive lateral movement
encryption. In particular, the WSAStartup and the WSAIoctl APIs are invoked to get a handler
to LPFN_CONNECTEX for low-level binds and connections.

Then, the GetIpNetTable API is invoked to recover the ARP table of the infected system. For
each entry of the ARP table, the specified IPv4 addresses are checked against the following
masks:

172.*
192.168.*
10.*
169.*

If the current ARP IPv4 respect one of these masks, the IP subnet is extracted and added
into a subnet’s queue. From this enumeration, two concurrent threads are created. The first
thread is responsible for subnet scanning: for each possible address (from .0 to .255) in each
extracted subnet the malware tries a connection on that IP on the SMB port (445) using the
TCP protocol. For each successful connection, this first thread saves the valid IP’s in a
queue and repeat the scan each 30 seconds.

The second thread wait for some valid IP in the IP’s queue and for each IP enumerate the
shares using the NetShareEnum API repeating the process described for the share
enumeration. The hexadecimal 0xFFFFFFFF is used as last IP address in the queue to kill
both threads and conclude the second and last part of the network enumeration.

10/10

Concluding the ransomware execution, the WaitForSingleObject API is invoked on each
thread to wait for the completion of encryption and enumeration operations before closing the
main process.

CONCLUSION

The Conti gang is one of the best known and most feared criminal organizations in the
digital world. The quantity and detail of the internal data that is gradually coming out about
the collective can certainly represent a real earthquake in the landscape of cyber threats. As
for the code, it appears to be very well modularized and managed. As we could have
expected its quality is certainly high.

