
1/13

By March 1, 2022

How IoT Botnets Evade Detection and Analysis
nozominetworks.com/blog/how-iot-botnets-evade-detection-and-analysis/

On the Hunt for Elusive Malware

Malware families targeting the IoT sector share multiple similarities with their Windows-based
counterparts, such as trying to evade detection by both researchers and security products.
Their aim is to stay below the radar as long as possible. One key technique to stymie reverse
engineering botnet code is to obfuscate the code by compressing or encrypting the
executable, called packing.

In this post, we explore the current status of the packers used by IoT malware, using data
collected by Nozomi Networks honeypots. We’ll also dig deeper into various obstacles that
researchers face when analyzing obfuscated samples and show how they can be handled.

As malware targeting the IoT sector evolves, many features are being borrowed from the
more well-known IT sector.

IoT Botnet Attack Statistics

https://www.nozominetworks.com/blog/how-iot-botnets-evade-detection-and-analysis/

2/13

Honeypots are vulnerable systems that are deliberately made available to adversaries so
that information on malicious activity can be collected for research, detection, and defensive
purposes. Nozomi Networks Labs runs a network of passive honeypots across various
regions that emulate multiple protocols commonly abused by attackers. The data they collect
is aggregated and used for research and detection efforts.

Over the course of a seven-day period, Nozomi Networks honeypots collected 205 unique
samples from attacks. The vast majority of the collected files are Linux executable files for
32-bit architectures.

Statistics of the different file types collected by our honeypots.

Attackers use packers to obfuscate their code, concealing the original code with the intent of
evading detection and making malware analysis more difficult and time consuming. Of the
samples we collected, approximately one third were packed using multiple versions of UPX,
a free and open-source packer widely used by both legitimate companies and malicious
actors. UPX was the only packer used in this set of samples.

https://www.nozominetworks.com/wp-content/uploads/2022/02/1-files-collected-by-honeypots.png

3/13

Percentage breakdown of UPX-packed samples and unpacked samples collected by the
honeypots.

At the time of the analysis, 49 of 205 samples were not present on VirusTotal, a share site for
malware details and research, and thus we decided to focus on these potentially new
threats. This subset of files follows a similar percentage distribution regarding the packer and
the version employed. Most of the new files—almost 80%—were not packed at all, with the
remainder packed with UPX.
Based on initial research, one of these samples appears to belong to the same malware
family that showed up in other internal Threat Intelligence research. It also stands out
because of the particular UPX packing structure modifications.

https://www.nozominetworks.com/wp-content/uploads/2022/02/2-samples-collected-by-honeypots.png
https://www.virustotal.com/gui/home/upload

4/13

Of new samples not present on VirusTotal, 80% were not packed, while the rest were packed
with UPX.

Unpacking Challenges

When a sample is only packed with UPX, it is very easy to unpack with the standard UPX
tool using the -d command line argument. Therefore, attackers will commonly modify the
UPX structures of a packed sample so that it remains executable, but the standard UPX tool
can no longer recognize and unpack it.

Since UPX is an open-source tool, we can check its source code on GitHub to understand its
structures and what fields it uses. (You can see more of its file structure here.)

https://www.nozominetworks.com/wp-content/uploads/2022/02/3-samples-not-present-virus-total.png
https://github.com/upx/upx/blob/d7ba31cab8ce8d95d2c10e88d2ec787ac52005ef/src/stub/src/include/linux.h#L721

5/13

Sample UPX file structure.

Most IoT samples packed with UPX modify the l_info and p_info structs in the header.
For example, as we have seen before with the SBIDIOT malware, it’s common for malware
authors to modify the l_magic value of the l_info struct in UPX-packed samples. In this
case, unpacking the sample is as trivial as replacing the modified l_magic value with
UPX! and executing upx -d .

In other cases, like the Mozi IoT malware family, the p_info struct is modified to set
p_filesize and p_blocksize to zero. The solution then involves repairing the two

zeroed values by replacing them with the filesize value that is available at the trailer of the
binary.

However, when we tried to unpack the samples of interest, UPX returned an unusual error:

https://www.nozominetworks.com/wp-content/uploads/2022/02/4-UPX-file-structures.png
https://eur03.safelinks.protection.outlook.com/GetUrlReputation
https://threatpost.com/mozi-botnet-majority-iot-traffic/159337/

6/13

Malware sample fails while testing to determine if it can be unpacked with UPX.

In this case, UPX is telling us that there was a problem with the b_info structure. After
some research, we concluded that this structure doesn’t seem to be widely used by malware
authors. b_info is a structure placed before each compressed block and contains
information about its compressed and uncompressed size, along with the algorithm and
parameters used to compress them. Once we checked the b_info structure in the file, we
realized it hadn’t been zeroed or modified in an obvious way.

Diving deeper into the internals of UPX, we found the exact place in the code that raises this
exception. If the compressed size (sz_cpr) is bigger than the uncompressed size
(sz_unc), UPX will fail. However, their values were coherent, so we discarded this
modification as the source of the problem. In these lines of code, we can see that the most
promising reason could be a problem with a difference between the sum of the declared size
of the uncompressed sections and the declared size of the uncompressed file. In our sample,
the sum of the value of sz_unc was bigger than the value of p_filesize , so we modified
the appropriate p_info structure to set its p_filesize field with a value that wouldn’t
trigger this exception.

After changing these values, a header checksum exception was raised. Calculating this
checksum value was possible since we had its source code, but it would be time-consuming,
so we temporarily moved to another research path. We decided to create packed samples
that were as similar as possible to the malicious sample so it would be easier to spot the
differences.

With the help of upx --fileinfo we got the parameters needed to pack another
executable with almost the same compression and decompression algorithm.

Extracting compression information from a malware sample.

To compress the sample, the attackers used a command similar to upx --best --nrv2d
<elf_file> . As a starting point to check differences, we used the rz-diff tool to

https://www.nozominetworks.com/wp-content/uploads/2022/02/5-malware-sample-fails.png
https://github.com/upx/upx/blob/devel/src/p_unix.cpp
https://github.com/upx/upx/blob/devel/src/p_unix.cpp#L514
https://www.nozominetworks.com/wp-content/uploads/2022/02/6-extracting-compression-information-malware-sample.png

7/13

compare the main decompression functions:

Creating an executable with similar packing and comparing unpacking functions.

We started comparing the differences between the functions, looking for the code we were
thinking the attackers added to the decompression process. An unexpected difference
appeared:

Malware sample packed using UPX 4.0.0.

At the moment, the stable UPX version is v3.96, and version 4.0.0 is in development.
Changelog doesn’t seem to contain big changes in how ELF compression works, but there
are a lot of commits that affect portions of the code involved in the calculation of these
values.
We then checked how this new version handled the issues we were seeing by downloading
the pre-release version of UPX and compiling it. After only fixing the UPX! strings headers
(b_info and p_info structures were left untouched) and passing this executable to UPX

https://www.nozominetworks.com/wp-content/uploads/2022/02/7-comparing-unpacking-methods.png
https://www.nozominetworks.com/wp-content/uploads/2022/02/8-malware-sample-packed-UPX-4-0-0.png

8/13

version 4.0.0, the sample was accurately decompressed.

Successful extraction with UPX 4.0.0 (commit a46b63).
It is possible that the attackers realized that this version of UPX (which is still in
development) generates functional samples that cannot be extracted by standard production
versions of UPX versions used by default by everyone.

Universal Manual Unpacking

Instead of digging deeper into the modifications introduced by attackers, there is another
approach we can consider. The idea here is to stop the debugging process when the code
and data are already unpacked but the unpacked code hasn’t been executed yet, to prevent
the subsequent possible data and code modifications, and write down the unpacked code
and data back to the disk. This approach is widely used to unpack Windows samples, but
what about IoT threats? From a high-level perspective, the same logic can certainly be
applied to them.

Here are several universal techniques that allow us to circumvent packers regardless of what
modifications are introduced. They generally involve relying on the steps that an unpacker
has to do in order to achieve its goal, mainly:

1. The packed code and data should be read and unpacked
2. A big memory block should be available to host the resulting unpacked sample
3. The result of the unpacking should be written into this big memory block
4. Depending on the existing protection flags for this block, they may need to be adjusted

to make code execution possible
5. Finally, the control should be transferred to the first instruction of the unpacked code

known as the Original Entry Point (OEP)

So, how can these techniques help us unpack the samples?

1. Generally, packed code and data have high entropy and can therefore be easily
identified in hex editors. Finding these blocks and tracking their cross-references can
help us find the decryption/decompression/decoding routine(s).

https://www.nozominetworks.com/wp-content/uploads/2022/02/9-successful-extraction.png

9/13

2. Keeping track of memory allocations (mmap syscall) may help us find the future virtual
address of the unpacked code and data.

mmap syscall (rax = 0x09) with a big memory block length requested.
3. Memory or hardware breakpoint on write operation set on the allocated block will help us
intercept the moment when the unpacked code and data of interest will be written there.

https://www.nozominetworks.com/wp-content/uploads/2022/02/10-high-entropy-block.png
https://www.nozominetworks.com/wp-content/uploads/2022/02/11-mmap-syscall.png

10/13

Setting a hardware breakpoint on write operation in IDA.
4. Keeping an eye on the mprotect syscall, which is commonly used to change protection
flags, can help identify the moment when this will happen.

mprotect syscall followed by an unusual control flow instruction.
5. Looking for unusual control flow instructions can help identify the moment when the
unpacker finished its job and is ready to transfer control to the first instruction of the freshly
unpacked code (OEP).

https://www.nozominetworks.com/wp-content/uploads/2022/02/12-hardware-breakpoint.png
https://www.nozominetworks.com/wp-content/uploads/2022/02/13-mprotect-syscall.png

11/13

The final unusual control flow instruction leading to the OEP.
Following these approaches separately or in combination eventually helps intercept the
moment when the unpacked code and data finally reside in memory readily available to be
dumped to the disk for subsequent static analysis.
In addition to these techniques, calling munmap syscall next to transferring control to the
OEP is another feature of UPX that allows researchers to quickly unpack such samples.
They can simply intercept it and then follow the execution flow.

munmap syscall (rax = 0x0B) executed next to transferring control to the OEP.

Conclusions

The landscape of malware targeting the IoT sector keeps evolving and borrowing many
features from the more well-known IT sector. Staying up-to-date with the latest trends in this
area and being able to handle them helps the security community combat new threats more
efficiently and reduces the potential impact of associated cyberattacks.

Related Content

https://www.nozominetworks.com/wp-content/uploads/2022/02/14-unusual-control-flow-instruction.png
https://www.nozominetworks.com/wp-content/uploads/2022/02/15-munmap-syscall.png

12/13

RESEARCH REPORT

OT/IoT Security Report – 2021 2H

Insights on the latest cyber threats
How and why critical infrastructure industries such as transportation and healthcare are
being targeted
Analysis of recent ICS-CERT vulnerabilities and exploitation trends
Remediation strategies to address today’s emerging threats

Download
Related Links

Blog: Extract Firmware from OT Devices for Vulnerability Research
Blog: Critical Log4shell (Apache Log4j) Zero-Day Attack Analysis
Blog: How to Analyze Malware for Technical Writing
Blog: The Clever Use of Postdissectors to Analyze Layer 2 Protocols
Blog: Nozomi Networks Labs Webinars & Podcasts

Nozomi Networks Labs

https://www.nozominetworks.com/ot-iot-security-report/
https://www.nozominetworks.com/ot-iot-security-report/
https://www.nozominetworks.com/blog/extract-firmware-from-ot-devices-for-vulnerability-research/
https://www.nozominetworks.com/blog/critical-log4shell-apache-log4j-zero-day-attack-analysis/
https://www.nozominetworks.com/blog/how-to-analyze-malware-for-technical-writing/
https://www.nozominetworks.com/blog/the-clever-use-of-postdissectors-to-analyze-layer-2-protocols/
https://www.nozominetworks.com/labs/webinars-podcasts/
https://www.nozominetworks.com/author/nn-labs/

13/13

Nozomi Networks Labs is dedicated to reducing cyber risk for the world’s industrial and
critical infrastructure organizations. Through our cybersecurity research and collaboration
with industry and institutions, we’re helping defend the operational systems that support
everyday life.

