
1/12

How to analyze malicious documents – Case study of an
attack targeting Ukrainian Organizations

cybergeeks.tech/how-to-analyze-malicious-documents-case-study-of-an-attack-targeting-ukraine-organizations/

Summary

This article presents an analysis of two malicious files and the tools used. Our approach can
be generalized to any other malicious documents. The last document is a .docx file that was
used to attack Ukrainian organizations in the context of the military conflict between Russia
and Ukraine. OLE (Object Linking and Embedding) is a technology based on COM
(Component Object Model) that allows objects to be linked or embedded into documents.

Analyst: @GeeksCyber

Technical analysis

First Document

SHA256: c2672e6fd55b129125a19c7837943c0844c03ec02dcf165af183f9e4df4dccbc

The first file to be analyzed is an Excel document. The oleid tool is used to determine if the file
contains any macros:

https://cybergeeks.tech/how-to-analyze-malicious-documents-case-study-of-an-attack-targeting-ukraine-organizations/
https://twitter.com/GeeksCyber


2/12

Figure 1
The olevba tool is utilized to obtain more information about the VBA macros found:



3/12

Figure 2
As we can see above, the tool detected a malicious macro that will run when macros are
enabled. The certutil.exe legitimate executable is used to download a malicious binary
(Ugrfa.bat) from a remote server and run it.

Oledump is a program to analyze OLE files. By running this tool against the malicious file, we
can confirm it contains a macro (note the letter “M”):

Figure 3

The same tool is utilized to dump and decompress the VBA macro:

Figure 4



4/12

ViperMonkey is a VBA Emulation engine that can be used to analyze and deobfuscate
malicious VBA macros. The tool was able to detect the entry point function (workbook_open)
and the routine responsible for downloading a malicious executable:

Figure 5
Because this file is equivalent to a .zip archive, we can use zipdump in order to examine its
content:

Figure 6
The 7z tool is used to decompress the xlsm file. The core.xml file contains the creator of the
document and the last modified by author (“Dell”), the created date/modified date of the
document:



5/12

Figure 7
The workbook.xml file contains 2 <sheet> elements that reference the worksheets in the
workbook:

Figure 8
SSView is a tool that can be utilized to analyze OLE2 Structured Storage files (vbaProject.bin
in our case):

Figure 9
ThisWorkbook is the workbook where the malicious macro code is running from:



6/12

Figure 10
The above URL is classified as malicious by multiple vendors per VirusTotal (see figure 11). At
this point, we were able to identify the malicious macro using different tools.

Figure 11
Second Document

SHA256: 992df82cf31a91acd034411bb43a1ec127fa15d613b108287384882807f81764

This document was sent to organizations in Ukraine via email.

Oleid is used to investigate the file, which doesn’t contain any VBA macros, as displayed in
figure 12:



7/12

Figure 12
We’ve also utilized the olevba tool in order to confirm the above information. It’s better to
validate the findings using different tools:

Figure 13
Three embedded objects were identified using the oledump tool:



8/12

Figure 14

We’re able to determine that the objects are identical. The same tool is used to dump one of
them:

Figure 15
The content of the .docx file can be found using the zipdump tool, as in the first case:

Figure

16
The 7z tool is used to decompress the file. The core.xml file contains the created
date/modified date of the document:



9/12

Figure 17
The document.xml.rels relationship file is shown below (we can observe the embedded
objects, some images, and other xml files):

Figure 18
We’ve analyzed the content of an embedded object using SSView:

Figure 19
The OLE Compound File Stream object called “\1Ole10Native” from figure 20 corresponds to
the embedded object:



10/12

Figure 20
Because we know that the document doesn’t contain macros, we can open the document
using LibreOffice in Linux. It appears to be a redacted criminal investigation report from the
National Police of Ukraine:



11/12

Figure 21
The exclamation marks that can be identified above lead to the embedded objects. When a
user clicks on the exclamation mark, the process writes a Javascript file in the Temp directory,
which will be run using wscript:



12/12

Figure 22
The purpose of the script is downloading a file from
https[:]//cdn.discordapp.com/attachments/932413459872747544/938291977735266344/putty.exe
and saving it as GoogleChromeUpdate.exe. The attackers tried to abuse Discord’s content
delivery network (CDN) in order to host their payload; however, VT recognizes the URL as
malicious
(https://www.virustotal.com/gui/url/d261c441e28d7b4cea8171e9cf4cc2c403d39685b97800a5
2604de979c5576b5). The Start-Process cmdlet is utilized to execute the downloaded file.
According to CERT-UA (https://cert.gov.ua/article/18419), this is supposed to be OutSteel
Trojan.

References

https://zeltser.com/media/docs/analyzing-malicious-document-files.pdf

https://github.com/decalage2/oletools/

https://github.com/decalage2/ViperMonkey

https://github.com/DidierStevens/DidierStevensSuite/blob/master/oledump.py

https://github.com/DidierStevens/DidierStevensSuite/blob/master/zipdump.py

https://www.virustotal.com/gui/url/d261c441e28d7b4cea8171e9cf4cc2c403d39685b97800a52
604de979c5576b5

https://cert.gov.ua/article/18419

https://www.virustotal.com/gui/url/d261c441e28d7b4cea8171e9cf4cc2c403d39685b97800a52604de979c5576b5
https://cert.gov.ua/article/18419
https://zeltser.com/media/docs/analyzing-malicious-document-files.pdf
https://github.com/decalage2/oletools/
https://github.com/decalage2/ViperMonkey
https://github.com/DidierStevens/DidierStevensSuite/blob/master/oledump.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/zipdump.py
https://www.virustotal.com/gui/url/d261c441e28d7b4cea8171e9cf4cc2c403d39685b97800a52604de979c5576b5
https://cert.gov.ua/article/18419

