
1/8

Yours Truly, Signed AV Driver: Weaponizing an Antivirus Driver
cyber.aon.com/aon_cyber_labs/yours-truly-signed-av-driver-weaponizing-an-antivirus-driver/

As we head into 2022, ransomware groups continue to plague our digital environment with new and interesting techniques to
bypass Antivirus (AV) and Endpoint Detection and Response (EDR) solutions and ensuring the successful execution of their
ransomware payloads.

In December 2021, Stroz Friedberg’s Incident Response Services team engaged in a Digital Forensics and Incident
Response (DFIR) investigation and environment-wide recovery of a Cuba ransomware incident. We discovered novel
indicators of compromise (IOCs) utilizing an interesting technique. Here, as part of the Cuba’s toolset, the threat actor group
executed a script that abused a function in an Avast Anti Rootkit kernel driver to terminate popular AV and EDR
processes.

While the use of kernel drivers to target and kill AV and EDR solutions prior to encryption has been known and discussed
for some time, the abuse of a signed and valid driver from an Antivirus vendor was surprisingly effective and ironic.

At the time of writing this article, there are three different versions of the same attack. They are listed below in the order of
implementation complexity:

A self-contained PowerShell script, dropped alongside the Avast driver, that installs and loads the driver and executes
a small number of functions to control the driver.
An executable that unpacks and loads in memory a small executable to control the driver. Within this blog, we refer to
this executable as the controller. Additional tools are used to install and load the Avast driver in the infected system.
A batch script that installs a service to load the Avast kernel driver, then launches a PowerShell script to decode, load
and execute the controller in memory.

This article delves into the implementation of the third variant of the attack where the attacker uses a batch script as
described in the third bullet point above.

The Staging – Batch Script

The first stage of the hijack starts with the threat actor dropping three files, a batch script, a PowerShell script, and an Avast
driver, within the target system’s “C:\Windows” and “C:\Windows\Temp” directories.

The threat actor executes the batch script to create and start a new service that utilizes a legitimate Avast Anti Rootkit kernel
driver named aswArPot.sys. A short timeout is included to ensure the service is fully started, prior to the execution of the
PowerShell script used to unpack and execute the controller.

@ echo off
sc.exe create aswSP_ArPot2 binPath= C:\windows\temp\aswArPot.sys type= kernel
sc.exe start aswSP_ArPot2
Timeout /t 3
C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe -windowstyle hidden -executionpolicy bypass -file
c:\windows\temp\SAMPLE.ps1

The Obfuscation – PowerShell Loader Script

The PowerShell script contains multiple layers of obfuscation which, when executed, decodes its contents, and rebuilds the
controller. Once the PowerShell script finishes rebuilding the controller, it utilizes Windows Application Programming
Interfaces (APIs) to load and execute the controller in memory.

®

1

2

https://cyber.aon.com/aon_cyber_labs/yours-truly-signed-av-driver-weaponizing-an-antivirus-driver/

2/8

Add-Type -TypeDefinition @'
 using System;
 using System.Diagnostics;
 using System.Runtime.InteropServices;
 public static class RANDOMSTRING1 {
 [DllImport("kernel32.dll")]
 public static extern IntPtr VirtualAlloc(IntPtr RANDOMSTRING2, uint RANDOMSTRING3, uint RANDOMSTRING4,
uint RANDOMSTRING5);

 [DllImport("PowrProf.dll")]
 public static extern IntPtr EnumPwrSchemes(IntPtr RANDOMSTRING6, IntPtr RANDOMSTRING7);
 }
'@

Function ouBmwjaLNIuXYiiWYYxZt() {
return (([regex]::Matches('[Redacted_Base64_String…]

The Controller – Malicious Portable Executable (PE)

The small (~5KB in size) PE loaded into memory proved to be simple, yet effective. The executable is designed to collate a
list of actively running processes, then compare them to an obfuscated hardcoded list of CRC64 checksum values of AV and
EDR processes names. If any process name directly correlates to an entry in the hardcoded list, an I/O Control (IOCTL)
code is sent to the Avast driver, resulting in the termination of the process.

Disassembling the sample on Ghidra provides insight into the hashing and comparison functions of the controller:

1. The initial function creates a handle to reference the recently installed Avast driver via the CreateFileW API. If the driver
handle returns as valid, the executable calls a function to find and terminate processes.

2. Once inside this function, a snapshot of actively running processes is taken. The function then iterates through the
lowercase Unicode representation of processes names and calculates a CRC64 checksum on each of them using the
CRC64_ECMA_182 algorithm.

3/8

3. The executable then cycles through the hardcoded list of CRC64 checksum values (QWORD_009c2030), each of which
represents the name of known AV or EDR processes. In the sample discussed in this article, the hardcoded list contained
119 (0x77) CRC64 checksum values.

4. If the sample finds a match, it calls the Avast process termination function passing the handle of the Avast driver, and the
matching process ID.

5. The DeviceIoControl API is called, which sends the 0x9988c094 IOCTL code to the Avast driver, along with the process
ID. This results in the Avast driver terminating the process at Kernel level, bypassing tamper protection implemented in most
AV and EDR products.

The Kill – Avast IOCTL Code

The aswArPot.sys Avast driver interprets the 0x9988c094 IOCTL code as a signal to terminate a given process. Below are
the pieces of the Avast driver disassembled and decompiled for research purposes, which show the method to terminate a
process from kernel mode, using KeAttachProcess and ZwTerminateProcess functions:

4/8

Figure 1. IOCTL code comparison within Avast driver’s code, which calls its process terminating function

5/8

Figure 2. Avast driver’s process terminating function

This IOCTL code and function can be found on multiple versions of the aswArPot.sys Avast driver, including the version
distributed on Avast products as of December 2021. However, it was confirmed, through behavioral analysis, that the latest
distributed versions of the Avast driver are not susceptible to this abuse. Upon contacting the Avast Bug Bounty team, we
have received confirmation that the issue was known and had been resolved by Avast on a February 2021 update of the
driver. Furthermore, we have received confirmation that Avast has been in contact with Microsoft to have them invalidate the
signature of older versions of the driver. Avast has been informed by Microsoft that a security update on March 2022 would
contain the signature update.

The specific aswArPot.sys driver utilized by the threat actors in this instance (SHA256:
4b5229b3250c8c08b98cb710d6c056144271de099a57ae09f5d2097fc41bd4f1) has the following file version information:

6/8

Copyright: Copyright (c) 2021 AVAST Software
Product: Avast Antivirus
Description: Avast Anti Rootkit
Original Name: aswArPot.sys
Internal Name: aswArPot
File Version: 21.1.187.0
Date signed: 2021-02-01 14:09:00

The Targets

Different implementations of this driver’s abuse, found either on VirusTotal or on the engagements, contain different lists of
targeted processes.

The smallest PowerShell script implementation targets only one specific process.
Three “early” versions of the PE found on VirusTotal contained clear-text strings of the targeted processes, along with
the transparently named PDB path “F:\\Source\\WorkNew19\\KillAV\\Release\\KillAV.pdb“. These versions contained
53, 72 and 88 targeted processes with the PE compilation timestamps of October 28 , November 2 and November
3 , 2021, respectively.
The PE with the longest target list of all, found during the Cuba ransomware incident, contained 110 unique targeted
processes (after removing duplicates) represented as CRC64 checksum values. It also contained the newest PE
compilation timestamp of all.

Utilizing the HashDB API service from OpenAnalysis , we were able to recover the clear-text strings corresponding to the
hardcoded CRC64 checksums of the latter sample mentioned above. The list contains process names from well-known AV
and EDR vendors, which include, amongst others, processes names from SentinelOne , Cylance , Avast , Carbon Black ,
Sophos , McAfee , and Malwarebytes .

Below is the list of 110 targeted processes found in the latest PE:

agentsvc.exe mfemms.exe SophosSafestore64.exe

alsvc.exe msmpeng.exe sophosui.exe

avastsvc.exe notifier.exe ssdvagent.exe

avastui.exe ntrtscan.exe sspservice.exe

avp.exe paui.exe svcgenerichost.exe

avpsus.exe pccntmon.exe swc_service.exe

bcc.exe psanhost.exe swi_fc.exe

bccavsvc.exe psuamain.exe swi_service.exe

ccsvchst.exe psuaservice.exe tesvc.exe

clientmanager.exe remediationservice.exe TmCCSF.exe

coreframeworkhost.exe repmgr.exe tmcpmadapter.exe

coreserviceshell.exe RepUtils.exe tmlisten.exe

cpda.exe repux.exe updaterui.exe

cptraylogic.exe savadminservice.exe vapm.exe

cptrayui.exe savapi.exe VipreNis.exe

cylancesvc.exe savservice.exe vstskmgr.exe

ds_monitor.exe SBAMSvc.exe wrsa.exe

dsa.exe sbamtray.exe sophossafestore.exe

th nd

rd

3

® ® ® ®

® ® ®

7/8

efrservice.exe sbpimsvc.exe sophoslivequeryservice.exe

epam_svc.exe scanhost.exe sophososquery.exe

epwd.exe sdcservice.exe sophosfimservice.exe

hmpalert.exe SEDService.exe sophosmtrextension.exe

hostedagent.exe sentinelagent.exe sophoscleanup.exe

idafserverhostservice.exe SentinelAgentWorker.exe sophos ui.exe

iptray.exe sentinelhelperservice.exe cloudendpointservice.exe

klnagent.exe sentinelservicehost.exe cetasvc.exe

logwriter.exe sentinelstaticenginescanner.exe endpointbasecamp.exe

macmnsvc.exe SentinelUI.exe wscommunicator.exe

macompatsvc.exe sepagent.exe dsa-connect.exe

masvc.exe sepWscSvc64.exe responseservice.exe

mbamservice.exe sfc.exe epab_svc.exe

mbcloudea.exe smcgui.exe fsagentservice.exe

mcsagent.exe SophosCleanM64.exe endpoint agent tray.exe

mcsclient.exe sophosfilescanner.exe easervicemonitor.exe

mctray.exe sophosfs.exe aswtoolssvc.exe

mfeann.exe SophosHealth.exe avwrapper.exe

mfemactl.exe SophosNtpService.exe

Future Functionality?

The PE found during the Cuba ransomware incident also contains a second smaller chunk of CRC64 checksums, which
correspond to the names of three specific ransomware executables utilized by Cuba Ransomware: “a.exe”, “anet.exe” and
“aus.exe”. These checksums sit next to unutilized strings “/c del“, “>> NUL” and “\\system32\\cmd.exe“. These strings are
never referenced. Along with the recent iterations and enhancements on observed versions of this PE, these strings indicate
that a potential future version of this executable could include a function to automatically delete the ransomware executables
from disk.

Closing Remarks

The capabilities brought to the table by exploiting functionalities of a signed and widely distributed Antivirus piece of
software, running under the highest privileges on a system, demonstrates the power of this technique. The sophistication
and resources being applied by ransomware groups into new innovative ways to bypass security controls continues to
increase.

IOCs

Below is a list of publicly found samples:

 File Name SHA256 Hash

 eset.ps1 8fcfa67e1fde51f7d99c3714f80b7672a0bb0d31c6cafdb5e7670b845d4dee98

 A82.exe 4306c5d152cdd86f3506f91633ef3ae7d8cf0dd25f3e37bec43423c4742f4c42

 KillAV.exe aeb044d310801d546d10b247164c78afde638a90b6ef2f04e1f40170e54dec03

8/8

c5e3b725080712c175840c59a37a5daa.virus

f68cea99e6887739cd82865f9b973664117af14c1a25d4917eec25ce4b26a381

ATT&CK® Mapping
Execution

T1059.001 – Command and Scripting Interpreter – PowerShell
T1106 – Native API
T1569.002 – System Services – Service Execution
T1204.002 – User Execution – Malicious File

Defense Evasion

T1458.002 – Abuse Elevation Control Mechanism – Bypass User Access Control
T1140 – Deobfuscate/Decode Files or Information
T1211 – Exploitation for Defense Evasion
T1574.010 – Hijack Execution Flow – Service File Permissions Weakness
T1562.001 – Impair Defense – Disable or Modify Tools
T1036.005 – Masquerading – Match Legitimate Name or Location
T1027.001 – Obfuscated Files or Information – Binary Padding
T1027.002 – Software Packing
T1055.002 – Process Injection – Portable Execution Injection
T1218 – Signed Binary Proxy Execution

Discovery

T1057 – Process Discovery

Acknowledgements: Special thanks to Aon’s Cyber Solutions team member, Nhan Huynh, for assistance with revising
content and ensuring accuracy.

Authors: Eduardo Mattos and Rob Homewood
 February 26, 2022

 ©Aon plc 2022

This material has been prepared for informational purposes only and should not be relied on for any other purpose. You should consult with your own professional advisors or IT
specialists before implementing any recommendation or following the guidance provided herein. Further, the information provided and the statements expressed are not intended
to address the circumstances of any particular individual or entity. Although we endeavor to provide accurate and timely information and use sources that we consider reliable,
there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future.

1 How DoppelPaymer Hunts and Kills Windows Processes, https://www.crowdstrike.com/blog/how-doppelpaymer-hunts-
and-kills-windows-processes

2 Signed Binary Proxy Execution – T1218, https://attack.mitre.org/techniques/T1218/

3 https://hashdb.openanalysis.net/

