
1/9

February 24, 2022

[QuickNote] Techniques for decrypting
BazarLoader strings

kienmanowar.wordpress.com/2022/02/24/quicknote-techniques-for-decrypting-bazarloader-strings/

1. Overview

Usually, to make it more difficult for analysts, malware authors will hide important strings and
only decrypt these strings during runtime. The famous malwares like Emotet, QakBot or
TrickBot often use the one or some functions to perform decrypting strings when needed.

However, on researching and analyzing some other malwares such as Conti, BlackMatter
and BazarLoader, instead of using a separate function to decrypt strings, these malwares
make it more difficult by saving the encrypted strings on the stack as stack strings. Then,
strings are decrypted by XOR-ing with a key value (this value may not be fixed) or through
quite complex computation. This technique consumes time of the analyst.

The images below are the pseudocode of the Conti and BlackMatter malware.

This article uses the BazarLoader samples as an example to demonstrate how to decrypt
strings with:

Automate resolving with IDAPython script.
Emulate code with IDA uEmu plugin.
Debugging with IDA Bochs plugin.

https://kienmanowar.wordpress.com/2022/02/24/quicknote-techniques-for-decrypting-bazarloader-strings/
https://blog.vincss.net/2021/01/re019-from-a-to-x-analyzing-some-real-cases-which-used-recent-Emotet-samples.html
https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-more-than-a-decade.html
https://blog.vincss.net/2021/10/re025-trickbot-many-tricks.html
https://kienmanowar.files.wordpress.com/2022/02/pic1.png

2/9

2. BazarLoader samples

BazarLoader was first discovered in April 2020. The malware loader has been continuously
evolving, allowing attackers to install additional malware, often used for ransomware attacks,
dropping Cobalt Strike, and stealing sensitive data. The common assumption is that the
distribution and post-exploitation activities of the loader are akin to the Trickbot malware.

These samples are all 64-bit Windows executable.

Unpacked sample 1: cc522400b3fed1d2c4dcca16666ddcff
Unpacked sample 2: 63c4bb3f1044f36632ce1759b62296dc

3. Decrypt strings

3.1. Using IDApython script

Analyzing the first sample of BazarLoader, we will see that it uses the same stack strings
decryption technique as in BlackMatter ransomware:

To decrypt these strings, you can use x64dbg to debug or extract the above values and use
CyberChef to perform the following:

https://www.virustotal.com/gui/file/74f19779e5a8ef2e459a9bf178cf35dc334a8ab97116d22c9e06d88ab3c5ef32/details
https://www.virustotal.com/gui/file/2465edb954ed8d6760c38481c0a9c1b34989dc9f009db059ddea9a0705f21492/details
https://kienmanowar.files.wordpress.com/2022/02/pic2.png
https://x64dbg.com/
https://gchq.github.io/CyberChef/
https://kienmanowar.files.wordpress.com/2022/02/pic3.png

3/9

However, debugging with x64dbg or using CyberChef as above will take more time, to make
static analysis easier, I will use IDAPython script to decrypt the strings. The code I use is as
follows:

Load this script into IDA, providing the relevant addresses to perform the decryption:

Finally, by using the above script, the analysis process will be much more convenient:

https://kienmanowar.files.wordpress.com/2022/02/pic3_1.png
https://kienmanowar.files.wordpress.com/2022/02/pic4.png

4/9

3.2. Using uEmu plugin

In the second sample of BazarLoader, the code that decrypt the stack strings is similar to the
Conti ransomware and quite complicated:

With the code as shown in the figure, the implementation of using IDApython script will be
difficult and not feasible. The most suitable solution for this case is to use an emulator to
emulate the code. Here, I will use uEmu, a tiny cute emulator plugin for IDA based on
unicorn engine.

Very easy to emulate the decoding code with uEmu:

https://kienmanowar.files.wordpress.com/2022/02/pic5.png
https://kienmanowar.files.wordpress.com/2022/02/pic6.png
https://kienmanowar.files.wordpress.com/2022/02/pic7.png
https://github.com/alexhude/uEmu

5/9

First, set a breakpoint at the address after the string has been decrypted.

Go to the beginning of the function and select the starting address of the function, then
start uEmu. The CPU Context Edit window will appear, click OK to continue. uEmu will
now initialize the emulator. Check the CPU context to see if the address of the
EIP/RIP register is pointed at the beginning of the function:

https://kienmanowar.files.wordpress.com/2022/02/pic8.png

6/9

Then, through uEmu Control, you can trace the code by Step or Run to emulates
instructions until breakpoint is reached. During execution, uEmu will ask about
unmapped memory, select No to continue.

https://kienmanowar.files.wordpress.com/2022/02/pic9.png

7/9

Press Step, to trace over the lea command. Then using uEmu’s Show Memory
Range feature, enter the address of the rdx register and select Add. The result will
be similar to the following:

3.3. Debugging with IDA Bochs Plugin

IDA Bochs debugger plugin allows malware researchers to debug malicious code in a
safe/emulated environment. For more information please visit [1], [2].

In order to debug the code that decrypt the string, we configure the Bochs plugin to work in
IDB mode. This mode is used to debug code snippets by simply selecting the code from the
database.

https://kienmanowar.files.wordpress.com/2022/02/pic10.png
https://kienmanowar.files.wordpress.com/2022/02/pic11.png
https://hex-rays.com/products/ida/support/idadoc/1329.shtml
https://hex-rays.com/wp-content/uploads/2019/12/debugging_bochs.pdf

8/9

Next, select the position or code snippets to debug, then press F9 to start debugging:

From here you can trace the code as usual or simply set a breakpoint at the address after
finished decryting the string and press F9. The resulting at rdx register will point to the
decrypted string as follows:

https://kienmanowar.files.wordpress.com/2022/02/pic13.png
https://kienmanowar.files.wordpress.com/2022/02/pic14.png

9/9

4. References

End.

m4n0w4r

https://kienmanowar.files.wordpress.com/2022/02/pic15.png

