
1/22

Hackers No Hashing: Randomizing API Hashes to Evade
Cobalt Strike Shellcode Detection

huntress.com/blog/hackers-no-hashing-randomizing-api-hashes-to-evade-cobalt-strike-shellcode-detection

While researching Application Programming Interface (API) hashing techniques commonly
used in popular malware (particularly Metasploit and Cobalt Strike), the Huntress ThreatOps
Team found that hackers are sticking to the default settings that come with hacker tooling.
Our research has suggested that many detection/antivirus (AV) vendors have realized this
and have built their detection logic around the presence of artifacts left by these defaults.

With a bit of tinkering and curiosity, we found that if trivial changes are made to those
defaults, a large number of vendors will fail to detect otherwise simple and commodity
malware. As a result, simple and commodity malware suddenly starts approaching FUD
status. 😅

In this post, we’ll dive into how we discovered those minor changes and how you can
implement them yourself to test your detection tooling. We have included a script that
automates a large portion of this process, as well as a YARA rule which will detect most
modifications made using this technique. 

Whether you’re on Team Red, Team Blue, or anywhere in between, we hope this blog
provides some useful insight into an interesting bypass and detection technique. 

If screenshots like this excite you, read on.

https://www.huntress.com/blog/hackers-no-hashing-randomizing-api-hashes-to-evade-cobalt-strike-shellcode-detection


2/22

Technical TL;DR

Our research suggests that a large number of vendors have based their Cobalt Strike and
Metasploit shellcode detection capability on the presence of ROR13 API hashes. By making
trivial changes to the ROR13 logic and updating the hashes accordingly, a large number of
vendor detections can be seemingly bypassed without breaking code functionality. 

In order to detect this behavior, YARA rules that previously detected ROR13 hashes can be
modified to detect blocks of code associated with typical ROR-based hashing. This move to
detection of ROR blocks can provide a more robust means of detection than detecting on
hashes alone.

Graphical TL;DR



3/22

But First, A Quick Refresher on API Hashing

API hashing is a technique often used by malware to disguise the usage of suspicious APIs
(essentially functions) from the prying eyes of a detection analyst or security engineer.

Traditionally, if a piece of software needed to call a function of the Windows API (for
example, if it wanted to use CreateFileW to create a file), the software would need to
reference the API name “directly” in the code. This typically looks like the screenshot below.



4/22

By “directly” using an API, the name of the API is left present in the code. This enables an
analyst to easily identify what the piece of suspicious code might be doing. In this case, that
suspicious action is creating or opening a file.

When a “direct” API call is used, it also leaves the API present in the import table of the file.
This import table can be easily viewed within PeStudio or any other analysis tool and looks
like the screenshot below. Note we can also see the other APIs that the malware is using. 

If you’re an attacker trying to hide the creation of a malicious file, then neither of these
situations is ideal. It would be far better if you could hide your API usage away from an
analyst who may see `CreateFileW` and then go searching for suspicious files. 

If an attacker doesn’t want their API to show up in an import table, then the alternative is to
load the APIs dynamically (when the malware actually runs). The easiest way to do this is to
use a Windows function called GetProcAddress. This method avoids leaving suspicious APIs
in the import table as we saw above in PeStudio.



5/22

A quick caveat using dynamic loading is that although the original suspicious API
`CreateFileW` would be absent from the import table, the usage of “GetProcAddress” will
now be in the import table instead. A keen-eyed analyst who sees the presence of
GetProcAddress can run the malware in a debugger and find out what is being loaded. 

With a well-placed breakpoint, an analyst can view the arguments being passed to the
GetProcAddress function and find out what is being loaded. Upon running the suspicious
code, a debugger would then present something like this, revealing the usage of
CreateFileW and indicating to an analyst that they should go looking for suspicious files that
may have been created. 



6/22

A common means of avoiding both of these situations is to use a technique known as API
hashing. 

This is a technique where attackers will implement their own version of GetProcAddress that
will load a function by a hash rather than a name. This avoids leaving suspicious APIs in
import tables and avoids using suspicious APIs that can be easily viewed in a debugger. 

If an analyst wants to find out what’s going on, they would need to get familiar with x86
assembly. 

The TL;DR Takeaways

There are multiple ways to load suspicious APIs; however, most will leave easy-to-find
indicators for malware analysts
API hashing uses unique hashes rather than function names. This hinders the analysis
of function names that target strings or arguments at breakpoints

Hashing Indicators

Now that we know why someone might want to use API hashing, we can take a look at how
to deal with it when analyzing suspicious code. It is relatively easy to identify, as you will
often see random hex values pushed to the stack, followed by an immediate call to a register
value. 

Typically, this call will resemble call rbp, but the register could technically be any value.
Below is a screenshot taken from some Cobalt Strike shellcode where API hashing was
used. 



7/22

In the screenshot, we can see two hex values pushed to a register prior to a `call rbp`. These
are the hashes that will be resolved and used to load suspicious functions used by malware. 

The hashes above correspond to 0x726774c (LoadLibraryA) and 0xa779563a
(InternetOpenA). 

If you were to find the value of rbp in this situation, you would find that it points to the
“manual” implementation of GetProcAddress, which then resolves the hash and calls the
associated API.

At a high level, the hash resolution logic is similar to the below pseudo code.



8/22

Additionally, you would find that the Calculatehash Logic, which is largely based on the ror13
hashing algorithm, is similar to this. The value of 0xd (13) is important here as later we will
change this value to generate new hashes that can bypass detection.

This is a simplification, and the actual logic is slightly more complex. If you’re interested in
understanding the logic in more detail, there are some great write-ups on the topic from
Nviso and Avast.

After analyzing numerous malware samples using API hashing in shellcode, we noticed that
similar malware families will often use extremely similar hashing logic to calculate and
resolve API hashes. 

https://blog.nviso.eu/2021/09/02/anatomy-and-disruption-of-metasploit-shellcode/
https://decoded.avast.io/threatintel/decoding-cobalt-strike-understanding-payloads/


9/22

In particular, we found that most Cobalt Strike, Msfvenom and Metasploit use exactly the
same hashing logic for resolving API hashes. Since they utilize the same logic, they produce
the same hashes for any given function.

For example, both Cobalt Strike and Metasploit will use the hash 0x726774c when resolving
“LoadLibraryA”.

The TL;DR Takeaways

API hashing is relatively simple to identify through static analysis, although it is difficult
to find what the hashes resolve to
Similar hashing logic is often used across similar malware families 
The exact same hashing logic is often across samples from MsfVenom, Metasploit and
Cobalt Strike

Poking a Bit Further

We eventually found that it was easy to identify shellcode that was generated by Cobalt
Strike or Metasploit simply by googling the hash values present in the code. 

If we were to google the value of 0x726774c (LoadLibraryA), we would immediately get hits
for the Metasploit framework (which shares code with Cobalt Strike). We see the same if we
google the hash for 0xa779563a (InternetOpenA).



10/22

Generating our own shellcode samples from these frameworks, we observed that the hashes
present in our payloads were consistently identifiable as those used by Metasploit and
Cobalt Strike. 

The TL;DR Takeaways 

Metasploit and Cobalt Strike (at least by default) use the same API hashing routine and
will produce the same hash values when using the same function
These hashes introduce unique hex values that can be used to easily identify the
malware families by using Google 

YARA Rules

From the perspective of a security analyst or detection engineer, this was great information.
Without performing a deep dive into shellcode and assembly, we could easily identify that a
payload likely belonged to either Metasploit or Cobalt Strike.



11/22

This got us thinking—if these hash values are unique to tools like Cobalt Strike and
Metasploit… what if those hashes are unique enough to be used for YARA rules?

We found a fantastic article from Avast that captured the same idea. Their article details the
use of these same API hashes to detect Cobalt Strike and Metasploit shellcode. Below we
can see a YARA rule from Avast which relies largely on the hashes we previously identified
(as well as the other hashes required for an HTTP stager). 

Testing these YARA rules against our raw Cobalt Strike and Metasploit shellcode (without
any encoders enabled), we confirmed the Avast YARA ruleset reliably detected and identified
all of our generated payloads. Great news for Team Blue—and great work from the Threat
Intel Team at Avast. 

The TL;DR Takeaways

API hashes present in shellcode are reliable indicators that can be used for detection
Vendors are actively using these indicators to detect malicious shellcode 

But What if the Hashes in the Shellcode Are Changed?

At face value, the usage of API hashes for detection is a great idea. But that got us thinking,
what happens if those hash values were to change?

As an initial proof-of-concept, we took our payloads and rather crudely changed the hashes
to 0x11111111. We knew this would break the shellcode as the hashes would no longer
resolve—but it would allow us to check how well the shellcode is detected without the
presence of known API hashes.

Our new shellcode would contain hashes like this in place of the actual hashes seen before.

https://decoded.avast.io/threatintel/decoding-cobalt-strike-understanding-payloads/
https://github.com/avast/ioc/tree/master/CobaltStrike


12/22

We then did a before and after check on a Cobalt Strike HTTP payload using Virustotal, and
found that 15 vendors failed to detect the shellcode after these changes were made.

As a proof-of-concept, this was pretty interesting. But as an attacker, this is largely useless.
In its current modified state, the shellcode would no longer resolve hashes and would not be
able to find the APIs it requires in order to execute—turning our shellcode into a nice digital



13/22

paperweight. 

The TL;DR Takeaways

At least some vendors are using API hashes to detect Cobalt Strike and similar
malware
If these defaults are changed, at least some vendors will fail to detect previously
detected payloads
Crudely modifying API hashes will break your code

But What if Modified Hashes Could Resolve Properly?

After confirming our suspicion that vendors were using API hashes to detect shellcode, we
decided to explore what would happen if the hashes were modified less crudely, in a way
that would still enable the modified hashes to resolve and execute. 

First, we needed to understand exactly how the hashes were generated. Our ThreatOps
team was able to discover this through a combination of the Metasploit source code and by
analyzing the assembly instructions present in samples of shellcode. 
By nature of how hashing works, we theorized that it should only take minor changes to the
hashing logic to produce vastly different hashes. In the end, rather than getting fancy with
any entirely new hashing routines, we decided to just change the rotation value in the
existing logic from 0xd/13 to 0xf/15.

In theory, this would result in entirely new hashes, while maintaining largely the same logic
and hashing structure. 

We then created a script to generate new hashes according to our new rotation value of 0xf.
This logic can be found in the final script included in this post. 



14/22

After generating new hash values, we then updated our shellcode to correspond to our new
hashes, and our new ror value of 0xf. Note that our shellcode structure is still largely intact,
the only thing that changed is the hash and rotation (ror) values. 

We then confirmed that our code was still able to function as expected. This process was
vastly sped up using the Speakeasy tool from FireEye. 

Below we can see a screenshot of the APIs still successfully resolving in our newly modified
shellcode. 

Using a combination of netcat and the BlobRunner tool from OAlabs, we did an extra check
to confirm that our shellcode still worked and would “call out” as expected.

https://github.com/mandiant/speakeasy
https://github.com/OALabs/BlobRunner


15/22

After confirming that our code definitely still worked, we uploaded it to VirusTotal. And found
that we still had two vendors remaining, the same two vendors from our previous dummy
value testing. 

This was pretty interesting, since this was now functioning Cobalt Strike shellcode—with 15
fewer detections than before it was modified. 

For a sanity check, we re-ran the same process using a TCP bind shell from Metasploit (no
encoders enabled). After confirming that the code still worked, we submitted it to VirusTotal
and found that 26 vendors had failed to detect the modified payload. 



16/22

During our analysis, it was interesting to note that the two remaining vendors differed
between the modified payloads.

At this point, we also checked that the original YARA rules were no longer detecting our
payloads. And confirmed that they were no longer being detected.

The TL;DR Takeaways

A large number of vendors are using default ror13 hashes to detect Cobalt Strike and
Metasploit/Msfvenom payloads.



17/22

Modifying these hashes has a considerable impact on detection rates.
When done properly, modifying these hashes will not break shellcode functionality.
This technique works well on both Msfvenom and Cobalt Strike. Hence likely works on
other malware families too.

So What About Those Remaining Vendors?

Rather than leave it at 2/55, we decided to tackle the two remaining vendors detecting our
shellcode. 

First, we noted that the remaining vendors were detecting generic shellcode and not Cobalt
Strike or Metasploit specifically. This led us to believe that they were detecting generic
shellcode indicators, rather than anything specific to our family of malware. 

We theorized the following might be targeted by the remaining vendors, since they are
behaviors typically associated with shellcode. 

CLD/0xfc being the first instructions executed - (CLD is used to reset direction flags
used in byte/string copy operations)
Suspicious calls to registers (eg call rbp)
Presence of library names in stack strings

To test, we slightly modified these indicators in our remaining payload. We achieved this by

Moving the initial CLD instruction to another location in our shellcode, so that it still
executed but was no longer the first instruction. (Assuming CLD executes before any
string operations, this should have no impact on shellcode functionality)
Inserting a NOP/0x90 in place of the original CLD
Inserting an uppercase character in the arguments to the initial call to LoadLibraryA.
(Since LoadLibraryA is not case sensitive, this shouldn’t break any functionality)

Below, we have a before and after of the modified shellcode. Note the minor changes from
“wininet” (all lower case) to “wIninet” (one upper case I). As well as the CLD instruction now



18/22

located after our pop rbp. 

We then confirmed that our shellcode still functioned, and then resubmitted it to VirusTotal.

Finally, we had hit 0/55 detections without breaking our code.

We then checked the same with Antiscan and found that we had also hit zero detections for
our Cobalt Strike shellcode—whereas a non-modified copy had 13 detections. 



19/22

The TL;DR Takeaways



20/22

Vendors are definitely using API hashes to identify Cobalt Strike shellcode
Removing API hashes will remove most—but not all—VirusTotal detections
Lacking hashes, some vendors will detect on other generic shellcode indicators
We can modify these remaining indicators to achieve zero detections

Automating the Process

Since the hashing replacement process could be achieved with a byte-level search and
replace, the Huntress ThreatOps team developed a script to automate the process. 

This script…

Takes a raw shellcode file as input (no encoders present)
Automates the hash replacement process, using a randomized ror value between one
and 255
Since a different ror value is used each time, a unique file and hash is generated upon
each run, allowing multiple files to be created for a single piece of shellcode

We decided not to automate the process of upper-casing the library name and moving the
CLD/0xfc, so you will need to do those manually if you wish to have zero detections. Both
activities can be done manually and with minimal effort using a hex editor. 

In order to use the script, generate a raw payload with Msfvenom or Cobalt Strike (make
sure your output is raw—do NOT use any encoders), save it to a raw binary file and then
pass it as an argument to the Python script. The script will handle the hash replacement
process with a random ror value and unique hashes. 

An example of how to generate a simple reverse shell payload using msfvenom. Note the
use of “--format raw” to avoid using encoders. 

Below is an example of how to use the script to modify the shellcode file. 



21/22

Notes and Limitations of This Script

This script only replaces hashes and the hashing logic. If there are other suspicious
indicators in your shellcode, you may need to find your own method to hide them 
This script is NOT an encoder, so you will still need to deal with bad characters and null
bytes within your shellcode 
Using a public and well-known encoder (like Shikata ga nai) will introduce its own
indicators which will work against you 

Detection of Modified Shellcode

After confirming that our script for generating new shellcode works for bypassing generic
detections, we then developed a YARA rule for detecting shellcode generated by our script.

Below we’ve included a copy of a YARA that detected all Msfvenom and Cobalt Strike
payloads that we tested with, regardless of whether they had been modified by our script. In
our testing, we did not hit any false positives within our test set of binaries, but you may wish
to modify the rule to fit your needs if false positives arise. 

How It Works

Since existing detection rules are detecting hashes generated by the hashing routine (which
can be easily changed), this rule detects the hashing routine itself. This allows for slightly
more robust detection of Cobalt Strike and Metasploit shellcode. 

As with any detection, this rule is not bulletproof. A determined attacker can introduce
more complex changes to the hashing routine which will break this YARA rule. We have
allowed for minor variations in our rule, but more complex changes will still defeat it. 

Final Comments

Clearly, detections aren’t always perfect, and a well-determined attacker will always be able
to sneak through. If you’re a defender, make sure you’re always testing and updating your
detection rules (you never know what might sneak past). 



22/22

If you’re an attacker (a Red Teamer, of course), don’t rely on defaults to get you by—simple
changes can have a significant impact on your chances of being detected.

And finally, a few key takeaways for Blue and Red Teamers, respectively:

Team Blue

Continuously test and update your detection logic
Actively threat hunt! No alerts ≠ no malware
Search through a variety of log sources—an AV may not have caught this, but the
network traffic might stand out like a sore thumb 

Team Red

Don’t use defaults! Tinker with everything
Don’t be afraid to get familiar with assembly!

Scripts/YARA Rules

YARA

Main Script (view the full script here)

References

https://github.com/matthewB-huntress/APIHashReplace

