
1/10

Anandeshwar Unnikrishnan February 17, 2022

Technical Analysis of Code-Signed “Blister” Malware
Campaign (Part 2)

cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-2/

The blister is a code-signed malware that drops a malicious DLL file on the victim’s system,
which is then executed by the loader via rundll32.exe, resulting in the deployment of a RAT/
C2 beacon, thus allowing unauthorized access to the target system over the internet. Blister
Malware campaigns have been active since 15 September 2021.

Part I of CloudSEK’s analysis provides a detailed understanding of how the loader functions.
Part 2 will delve into the details of this campaign’s second stage, which is the .dll payload,
and its internal working.

Dissecting the Malicious DLL – Blister Malware

As discussed in Part 1, the Blister dropper drops the malicious .dll file in the Temp
directory of the user, inside a newly created folder. This malicious .dll then carries out
the second stage of the campaign, in which a RAT/ agent is deployed on the system to gain
unauthorized access and steal data.

The Blister dropper calls the function LaunchColorCpl, which is one of the functions
exported by the .dll, via rundll32.exe.

Functions

exported by the malicious DLL

Staging

The exported function LaunchColorCpl retrieves the staging code from the
resource section of the PE file. This staging code is protected by a simple XOR
encoding scheme.

https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-2/
https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-1/

2/10

Code responsible for decoding the staging code

Encoded staging

code in the resource section of the PE file
After the iterative decoding of the staging code, the control is transferred to decoded
code in the memory.
The control flow is transferred to the staging code by calling the address in the EAX
register.

Calling the

address in the EAX register

Anti-Analysis

The staging code is heavily obfuscated, and has a logic similar to a spaghetti code, to
hinder analysis. All the calls to Windows APIs are obscured and dynamically resolved.
The first thing that the staging code does is to make the malware go to sleep by calling
the Sleep Windows API. This is a typical strategy used by most malicious codes to
bypass security sandboxes and dynamic testing of security products.

Stackframe before the malware calls the Sleep

Windows API

3/10

The hex value “927C0” is passed to kernel32.759F9010 i.e the Sleep function. This
value (927C0) translates to “600000” in decimal. Since the Sleep API takes arguments
in milliseconds (ms), the 600000 ms get converted to 10 minutes.
When the malware resumes from sleep, it fetches the final payload from the resource
section of the PE file.

Snippet of the protected payload stored in the memory
In the memory, the protected payload is decoded. The presence of a DOS header, in
the payload bytes, confirms that the payload is in PE format and not a shellcode.

Decrypted payload stored in the memory
An interesting observation from this analysis, is the addition of MZ byte after the
decryption process. In the above image, the initial byte is not MZ, rather the MZ byte is
later added at the beginning of the payload separately. This behavior is primarily for
operational security.

Addition of the MZ byte after the decryption process

Process Hollowing

4/10

In general, process hollowing allows an attacker to change the content of a legitimate
process from genuine code to malicious code before it is executed by carving out the code
logic within the target process.

After decrypting the final payload, the malware prepares for execution.
This is done by creating a new process to deploy the extracted code and then
performing process hollowing to execute the payload in the remote process. The
staging code retrieves the Rundll32.exe location from the compromised system.

Retrieval of the

location of rundll32.exe
A new process of Rundll32.exe is created via the CreateProcessInternalW API in the
suspended state.

Creation of the new

rendll32.exe
The malware uses the following Win32 APIs for process hollowing:

ZwUnmapViewOfSection
ZwReadVirtualMemory
ZwWriteVirtualMemory
ZwGetContextThread
ZwSetContextThread
NtResumeThread

ZwWriteVirtualMemory is used to write malicious code into the target process.
To make the thread of the new process point to newly written code, the attacker alters
the entry point of the current thread via ZwGetContextThread and
ZwSetContextThread.
These functions are used to perform processor housekeeping activities on the data
structure that stores the current context of the running thread. Process hollowing takes
advantage of these features to make the process thread run the attacker code.

5/10

Step by Step Working of the DLL

The staging code allocates a new memory via ZwAllocateVirtualMemory to transfer the
previously decrypted final payload.

Allocation of new

memory via ZwAllocateVirtualMemory
The payload is then copied to a newly created buffer.. Based on CloudSEK’s testing on
the extracted payload, one of the analyzed samples contained the Raccoon stealer as
the final stage payload. However, other samples used Cobalt Strike beacon and BitRAT
to compromise the target and gain unauthorized access.

Moving the payload to a newly created buffer
The staging code then injects the code into the newly created remote process i.e
Rundll32.exe.

Code injections into the newly created rendll32.exe
Later, the memory protections are changed to appropriate ones for the execution of the
residing code via NTProtectVirtualMemory.

6/10

Alteration of the memory protections
The thread context is retrieved via ZwGetContextThread API to change the entry point
of the thread to execute the payload injected into the remote process.

Addition of the MZ byte after the decryption process
 TheZwSetContextThread is used to modify the thread entry point to that of the newly

copied PE file.

Modification of the

thread entry point to the copied PE file
At the final stage of process hollowing, the suspended thread of the Rundll32.exe is
resumed via NtResumeThread . Then the Rundll32.exe process starts executing
the malicious code hollowed into it by the malware.

Resuming the suspended thread
In the clean-up process, the staging code uses NtFreeVirtualMemory to release the
allocated memory, which holds the payload assembly, one by one.

7/10

Clean-up process

releasing the allocated memory
The current process used for staging is terminated via the NtTerminateProcess .

Termination of the current process

Blister Malware – Maintaining Persistence

The Blister malware achieves persistence on the target system by creating an “lnk” file
named proamingsGames in the C:\Users\
<username>\AppData\Roaming\Microsft\Windows\Start Menu\Startup directory.
Whenever the user logs in, explorer.exe executes any file in the Startup folder.
As a result, when the user signs into the account, following the boot process, the
malware runs as a child process of explorer.exe .

Ink file produced in the Startup directory
The target for the lnk file is set as
C:\ProgramData\proamingsGames\proamingsGames.dll,LaunchColorCpl . Here,

the malware copies the Rundll32.exe as proamingsGames.exe and the malicious
.dll (initially into C:\ProgramData\proamingsGames directory) is dropped in the
Temp folder.

8/10

Contents of the proamingsGames.dll file
Every time that the system powers up and the user logs in, the lnk file runs a malicious
.dll through a renamed instance of Rundll32.exe .

Conclusion

Given that threat actors are actively using valid code-signing certificates in Windows
systems, to avoid detection by antivirus software, it is essential for network and endpoint
security products to be updated with the malwares’ latest Indicators of Compromise (IoCs).
The latest IoCs for the Blister Malware are enumerated in Part 1 of the technical analysis.

Author Details

Anandeshwar Unnikrishnan
Threat Intelligence Researcher , CloudSEK
Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of
offensive cybersecurity. He is fuelled by his passion for cyber threats in a global context. He
dedicates much of his time on Try Hack Me/ Hack The Box/ Offensive Security Playground.
He believes that “a strong mind starts with a strong body.” When he is not gymming, he finds
time to nurture his passion for teaching. He also likes to travel and experience new cultures.

https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-1/
https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/

9/10

Hansika Saxena
Total Posts: 2
Hansika joined CloudSEK’s Editorial team as a Technical Writer and is a B.Sc (Hons) student
at the University of Delhi. She was previously associated with Youth India Foundation for a
year.

×

Anandeshwar Unnikrishnan
Threat Intelligence Researcher , CloudSEK
Anandeshwar is a Threat Intelligence Researcher at CloudSEK. He is a strong advocate of
offensive cybersecurity. He is fuelled by his passion for cyber threats in a global context. He
dedicates much of his time on Try Hack Me/ Hack The Box/ Offensive Security Playground.
He believes that “a strong mind starts with a strong body.” When he is not gymming, he finds
time to nurture his passion for teaching. He also likes to travel and experience new cultures.

Latest Posts

https://cloudsek.com/author/hansika-saxena/
https://cloudsek.com/author/anadeshwar-unnikrishnan/
https://cloudsek.com/

10/10

https://cloudsek.com/technical-analysis-of-emerging-sophisticated-pandora-ransomware-group/
https://cloudsek.com/malicious-macros-and-zone-identifier-alternate-data-stream-information-bypass/
https://cloudsek.com/technical-analysis-of-the-hermetic-wiper-malware-used-to-target-ukraine/
https://cloudsek.com/technical-analysis-of-code-signed-blister-malware-campaign-part-2/

