
1/11

February 15, 2022

Guard Your Drive from DriveGuard: Moses Staff
Campaigns Against Israeli Organizations Span Several
Months

fortinet.com/blog/threat-research/guard-your-drive-from-driveguard

Over the past year, FortiEDR has prevented multiple attacks that attempted to exploit various
Microsoft Exchange server vulnerabilities, some of which we have previously covered.

Among these attacks, we identified a campaign operated by Moses Staff, a geo-political
motivated threat group believed to be sponsored by the Iranian government. After tracking
this campaign for the last several months we found that the group has been using a custom
multi-component toolset for the purpose of conducting espionage against its victims.

This campaign exclusively targets Israeli organizations. Close examination reveals that the
group has been active for over a year, much earlier than the group’s first official public
exposure, managing to stay under the radar with an extremely low detection rate.

https://www.fortinet.com/blog/threat-research/guard-your-drive-from-driveguard
https://www.fortinet.com/blog/threat-research/more-proxyshell-web-shells-lead-to-zerologon-and-application-impersonation-attacks

2/11

In this blog, we will cover the Techniques, Tactics, and Procedures (TTPs) used by Moses
Staff and reveal a new backdoor used by them to download files, execute payloads, and
exfiltrate data from target networks, along with threat intelligence data on their activities.

Affected Platforms: Windows
Impacted Users: Windows Users
Impact: Data theft and execution of additional malicious payloads
Severity Level: Critical

Infection Vector

The initial infiltration was accomplished by leveraging the ProxyShell exploit in Microsoft
Exchange servers to allow an unauthenticated attacker to execute arbitrary commands on
them through an exposed HTTP\S port. As a result, the attackers were able to deploy two
web shells:

C:/inetpub/wwwroot/aspnet_client/system_web/iispool.aspx
C:/inetpub/wwwroot/aspnet_client/system_web/map.aspx

These two web shells are used in conjunction with one another, and some of their
functionalities overlap. On numerous occasions, map.aspx was used to validate the results
of the commands executed by iispool.aspx.

Post infection, the attackers dedicated several days to the exfiltration of PST files and other
sensitive data from the compromised server. Next, they attempted to steal credentials by
creating a memory dump of lsass.exe using a LOLBin. Finally, the attackers dropped and
installed the backdoor components.

Figure 1: Command line for dumping memory for lsass.exe

Execution Chain

The loader resides in C:\Windows\System32\drvguard.exe. When executed with the “-I”
command-line argument, it installs itself as a service named DriveGuard.

Figure 2: DriveGuard service properties

The loader is responsible for executing the backdoor component and then monitoring its
process, executing it whenever it has stopped. In addition, it launches a watchdog
mechanism that ensures its own service is never stopped. The following flow chart illustrates
the described process:

Figure 3: Loading mechanism flow

https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

3/11

If the backdoor does not exist on the disk, the loader creates it by reading the content of
C:\Windows\System32\rsc.dat and restoring its DOS header magic value to 4D 5A 90. The
valid executable is written to disk at C:\Windows\System32\broker.exe

Figure 4: rsc.dat – the backdoor without magic bytes in the header

The next step is to execute the backdoor. When doing so, the loader attempts to spoof the
backdoor’s parent process to be svchost.exe. This is achieved via calling CreateProcess and
setting the parent process attribute (PROC_THREAD_ATTRIBUTE_PARENT_PROCESS) to
the first svchost.exe process found in the system. Parent process spoofing may aid in the
evasion of security products. Generally, this method may also be used for gaining SYSTEM
privileges, but in our case, the loader is already running as a system service. If the spoofing
fails, the loader will run the backdoor without it.

The backdoor is executed with the command-line argument “-ser”.

Service Watchdog

The loader also sets a watchdog to ensure it remains operational. The watchdog module,
lic.dll, is injected to a newly spawned lsass.exe process.

The injection is implemented in inj.dll, which uses VirtualAllocEx and SetThreadContext to
run shellcode in the target process. The shellcode loads a DLL and then jumps back to the
previous instruction pointer of the thread.

Subsequently, lic.dll begins to monitor the DriveGuard service, restarting it whenever it has
stopped. In addition, it ensures that the DriveGuard service is always configured to start
automatically on system startup.

Figure 5: The shellcode injected by inj.dll into lsass.exe

Broker Backdoor

The backdoor component oversees receiving and executing commands from the C2 server.
It runs only if it receives the command-line argument “-ser”. Otherwise, it triggers a divide-by-
zero exception. This is most likely an attempt to thwart dynamic analysis by automatic
security products such as sandboxes.

To ensure that only one instance of the backdoor is running on the system, it creates an
event called “Program event”.

Figure 6: Event created by the backdoor

Configuration

4/11

The backdoor’s configuration is stored encrypted in a file at C:\Users\Public\Libraries\cfg.dat.
The encryption scheme used is XOR-based and can be decrypted by the following Python
code. The hardcoded key is consistent throughout all the samples in our possession.

def decrypt(encrypted):

key = '9c4arSBr32g6IOni'

result = ''

for i in range(len(encrypted)):

key_char = ord(key[i%16]) + 4

enc_char = encrypted[i]

result_char = (key_char ^ enc_char) + 4

result += chr(result_char)

return result

Figure 7: Python implementation of the decryption routine for the configuration file

The decrypted configuration contains two sets of C2 and URI addresses, alongside a time
interval, in seconds, that determines the frequency at which to contact the server. A random
value between 0 and 2 seconds is added to the interval to cause jitter.

If the configuration file does not exist, the malware uses plaintext configuration values
hardcoded in the executable. In our samples, these values are identical to the ones in the
configuration file.

Figure 8: Decrypted backdoor configuration

Communicate Your “Boundries”

The main part of the malware oversees communication with the server, parsing its responses
and executing commands. The backdoor first sends a POST request, as can be seen in
figure 9, to the first configured server. It alternates between contacting the two servers
depending on their status, switching between them when they are unresponsive or return
empty replies.

Figure 9: HTTP POST request sent by the backdoor to the C2

The request looks like encoded HTML form data that is delimited by a boundary value which
appears to contain a misspelled "BoundrySign" string. The noteworthy fields in the request
are token and data .

5/11

The data field contains information about the infected machine. The machine time zone has
been chosen by the attackers for the purpose of regional attribution. This string is encrypted
with the same algorithm and key that were used to encrypt the configuration file.

Figure 10: Format of victim information sent to the C2

Interestingly, the malware fails to retrieve the correct OS version due to usage of the
deprecated GetVersionEx API, which causes executables without updated manifests to
invariably return the Windows 8 value while actually running on a newer operating system.

The token field is comprised of the hostname, username, and an ID. The hostname and
username are encrypted with a ROT5 Caesar cipher, meaning that 5 is added to each
character’s ascii value. The encrypted result is then appended to the ID.

Figure 11: Format of unique identifier sent to the C2

The ID is hardcoded in the binary and is a distinctive identifier of a specific target
organization. Namely, backdoor binaries are specially compiled per target before they are
deployed by the threat actor.
The backdoor continually queries the server for commands. In the event of five consecutive
unsuccessful queries, the backdoor will switch to contacting the backup server. An
unsuccessful query is considered to be one of the following:

The server is unresponsive.
The parsed response starts with the byte 0xA.
The parsed response is empty.

The server response is parsed until the first “]” character and everything after is disregarded.
If the response lacks a “]” it is treated as an empty response.

If the parsed server response is “on”, the backdoor will continue to query the same server
without switching to the backup server. Any other response is treated as a command. As
such, it is decrypted with the same algorithm and key as specified previously. If the decrypted
response data is self, the backdoor stops executing. Otherwise, it proceeds to parse the
decrypted data as a command with the following format:

Figure 12: Format of commands sent by the C2

Type – The command type. This can be one of the values from the “Type” column in
the Commands table.
Arg1…Arg4 – The command arguments. Not all arguments are provided for every
command, in which case their value will be the string “null”.
ID – A unique identifier. This ID is sent to the server alongside the command results to
associate the results with the executed command.

6/11

Supported Commands

The following is a list of the commands that the backdoor may receive from the server.
Several commands involve downloading additional DLLs from the server and executing
them. The functionality of these modules is unknown at this time.

Type Description

fe Directory listing (recursive).

ce Execute command line.

dw Upload a file from the disk to the C2.

up Download a file from the C2 and save to the disk.

sb Download a DLL from the C2 and execute it using LoadLibrary, calling its
“mainfunc” export.

tlg Download a DLL from the C2 and execute it using LoadLibrary, calling its
“mkb64” export.

rns Download a DLL from the C2 and execute it using LoadLibrary, calling its
“mkb64” export.

int Update the interval field in the configuration.

ki Delete the malware from the disk using a CMD command.

This may potentially be used in conjunction with the self command for complete
self-destruction.

upd Update the tool by running CMD commands to replace the current module on the
disk with a file received from the C2.

ho* Update the C2 and URI fields in the configuration.

inf* Send the configuration content and the malware’s filename to the C2.

7/11

cmprs* 7-zip compress using ar.dll and ar.dat utilities. If they are not present on the disk,
the tool downloads them from the C2.

sc** Capture a screenshot, saving it to C:\Users\Public\Libraries\tmp.bin before
sending it unencrypted to the C2.

kl** The command name and its operation imply keylogger functionality.

The first time this command is received, the malware will download a DLL from
the C2 and execute it using LoadLibrary, calling its “strt” export. Upon
subsequent receipts of this command, the contents of
C:\Users\Public\Libraries\async.dat will be sent to the C2.

This DLL most likely writes its output to that file. However, as it is not in our
possession, we cannot confirm this.

au** Establish scheduled task persistence for itself using the following command:

SCHTASKS /CREATE /TN "Mozilla\Firefox Default Browser Agent
409046Z0FF4A39CB" /ST 11:00 /F /SC DAILY /TR
“<CURRENT_EXECUTABLE>”

Figure 13: List of supported commands

* Command present in the newer versions only
 ** Command present in the older versions only

History of Operations

Using Yara rules in VirusTotal’s retrohunt engine we detected two older samples of the
backdoor. Both samples were uploaded around the end of December 2020, which leads us
to believe that this campaign has been operating for at least a year. Until recently, they have
been flying under the radar with a very low detection rate.

Figure 14: VirusTotal entries of the older backdoor versions

The most notable differences between the versions are the configuration file and the
commands.

In lieu of a configuration file, the older variants exclusively use values hardcoded in the
binary. In terms of commands, a few modifications have taken place in between the versions.
As can be seen in figure 13, various new commands have been added to the latest samples,

https://www.cybereason.com/blog/strifewater-rat-iranian-apt-moses-staff-adds-new-trojan-to-ransomware-operations

8/11

while other commands have been eliminated. Although commands were removed, we
assess that the code might have been moved to one of the modules that can be fetched from
the server.

Certain modifications may aim to improve covertness and hinder detection. For example, the
older samples were able to receive the “au” command to register a scheduled task using a
command-line that was hardcoded in the binary. On the other hand, in recent attacks, we
observed task registration via a scheduled task XML file that was dropped by the backdoor.

The last minor difference between versions is the name of the event. Older versions created
an event called “program Event”. This capitalization error was corrected in the recent
versions.

Searching for the C2 addresses in FortiGuard Labs’ threat intelligence systems shows a
large spike in traffic volume during April 2021. This indicates that the group was operational
long before their initial public exposure. All the network traffic to the malicious servers
originated from Israeli IP addresses.

Figure 15: FortiGuard Labs' historical data for C2 IP address

Figure 16: FortiGuard Labs’ historical data for C2 domain name

During our investigations, we were able to take over and sinkhole the techzenspace[.]com
domain in the beginning of January 2022. This was done to try and prevent the backdoor
from operating for the near future while attempting to identify additional infected
organizations that are not Fortinet customers.

Attribution

We were able to attribute the iispool.aspx web shell to the Moses Staff group based on past
research. Both the web shell path and its code are identical to the ones previously reported.
Another recent publication referenced in the previous section reaffirms our attribution.

All victims are Israeli organizations belonging to various industries. Although the attacks we
identified did not reach a destructive stage, we can’t rule out the possibility that the backdoor
is used before that to exfiltrate data from target networks.

Conclusion

We have been monitoring Moses Staff operations closely these past few months. We have
analyzed new TTPs and attributed a new set of tools to the group, including a backdoor, a
loader and a web shell.

https://research.checkpoint.com/2021/mosesstaff-targeting-israeli-companies/

9/11

The group is highly motivated, capable, and set on damaging Israeli entities. While they have
been operating continuously and vigorously since late 2020, they were only publicly
acknowledged about a year after. At this point, they continue to depend on 1-day exploits for
their initial intrusion phase.

Although the attacks we identified were carried out for espionage purposes, this does not
negate the possibility that the operators will later turn to destructive measures. We believe
that ransomware or wipers may have not been deployed because FortiEDR blocked earlier
stages of the attack.

Fortinet Protections

FortiEDR detects and blocks these threats out-of-the-box without any prior knowledge or
special configuration. It does this using its post-execution prevention engine to identify
malicious activities:

Figure 17: FortiEDR blocking the memory dumping attempt of lsass.exe

Figure 18: FortiEDR blocking the backdoor communication

All network IOCs have been added to the FortiGuard WebFiltering blocklist.

The FortiGuard AntiVirus service engine is included in
Fortinet’s FortiGate, FortiMail, FortiClient, and FortiEDR solutions. FortiGuard AntiVirus has
coverage in place as follows:

ASP/Webshell.DW!tr
 W64/Agent.AVV!tr

 W32/Agent.UWN!tr
 W32/Agent.UYS!tr

 W64/Agent.AVS!tr
 W64/Agent.AVU!tr

In addition, as part of our membership in the Cyber Threat Alliance, details of this threat were
shared in real time with other Alliance members to help create better protections for
customers.

Appendix A – MITRE ATT&CK Techniques

ID Description

T1190 Exploit Public-Facing Application

10/11

T1505.003 Server Software Component: Web Shell

T1083 File and Directory Discovery

T1003.001 OS Credential Dumping: LSASS Memory

T1005 Data from Local System

T1114 Email Collection

T1569.002 System Services: Service Execution

T1480 Execution Guardrails

T1134.004 Access Token Manipulation: Parent PID Spoofing

T1055 Process Injection

T1140 Deobfuscate/Decode Files or Information

T1071.001 Application Layer Protocol: Web Protocols

T1082 System Information Discovery

T1033 System Owner/User Discovery

T1573.001 Encrypted Channel: Symmetric Cryptography

T1008 Fallback Channels

T1059.003 Command and Scripting Interpreter: Windows Command Shell

 T1113 Screen Capture

T1053.005 Scheduled Task/Job: Scheduled Task

11/11

T1041 Exfiltration Over C2 Channel

Appendix B: IOCs

File Hashes (SHA256)

 2ac7df27bbb911f8aa52efcf67c5dc0e869fcd31ff79e86b6bd72063992ea8ad (map.aspx)
 ff15558085d30f38bc6fd915ab3386b59ee5bb655cbccbeb75d021fdd1fde3ac (agent4.exe)

 cafa8038ea7e46860c805da5c8c1aa38da070fa7d540f4b41d5e7391aa9a8079 (calc.exe)

File Names
 iispool.aspx
 map.aspx

 drvguard.exe
 agent4.exe

 calc.exe
 inj.dll

 lic.dll

Event Names
 program Event
 Program event

IPs
 87.120.8[.]210

Domains
 techzenspace[.]com

URLs
 hxxp://87.120.8.210:80/RVP/index3.php

 hxxp://techzenspace.com:80/RVP/index8.php

Learn more about Fortinet’s FortiGuard Labs threat research and intelligence organization
and the FortiGuard Security Subscriptions and Services portfolio.

https://www.fortinet.com/fortiguard/labs?utm_source=blog&utm_campaign=fortiguard-labs
https://www.fortinet.com/fortiguard/labs?tab=security-bundles&utm_source=blog&utm_campaign=security-bundles

