
1/8

February 15, 2022

Analysis of Microsoft CVE-2022-21907
fortinet.com/blog/threat-research/analysis-of-microsoft-cve-2022-21907

Threat Research

By Tim Lau | February 15, 2022

On January 11 , 2022 Microsoft released a patch for CVE-2022-21907 as part of Microsoft’s
Patch Tuesday. CVE-2022-21907 attracted special attentions from industry insiders due to
the claim that the vulnerability is worm-able. In this analysis we will look at the cause of the
vulnerability and how attackers can exploit it.

Affected Platforms: Windows Server 2022, Windows Server 2019, Windows 10

 Impacted Users: Any organization with affected Windows system
 Impact: Denial of service to affected systems

 Severity Level: High

th

https://www.fortinet.com/blog/threat-research/analysis-of-microsoft-cve-2022-21907
https://www.fortinet.com/blog/search?author=Tim+Lau

2/8

CVE-2022-21907 is a remote code execution vulnerability in Windows’ Internet Information
Services (IIS) component. More specifically, it affects the kernel module inside http.sys that
handles most of the IIS core operations. At a minimum, the vulnerability can lead to denial of
service conditions on the victim’s machine by crashing the operating system. It might also be
possible to combine this vulnerability with another vulnerability to enable remote code
execution.

We used Windows 2022 Server 10.0.20348.143 as the base of our analysis. IIS is also
present on Windows 10. We also looked at the Windows 10 (2H 2021) http.sys and
confirmed that the same vulnerable code path exists. However, since IIS is not enabled by
default on Windows 10, the chance of Windows 10 systems being exploited is significantly
less.

First, we performed a binary differential between the vulnerable http.sys and the patched
http.sys (10.0.20348.469). The program Bindiff compared the two binary files and highlighted
the functions that have been modified. While a few functions were heavily modified, we were
interested in two particular functions—http!UlpAllocateFastTracker() and
http!UlFastSendHttpResponse() .

(As an aside, we did our initial analysis on Windows 10 http.sys, and these two functions are
the only ones patched on Windows 10.)

In http!UlpAllocateFastTracker(), we see the following differences:

Figure 1: Differences between the original (top) and the patched function (bottom)

One curious thing to note is that memset() is called twice to zero out the buffer: once for a
hardcoded first 0x1e0 bytes of the buffer, and the other starting at 0x2e for 0x50 bytes.

Figure 2: memset(value = 0, size=0x1e0)

Figure 3: memset(value = 0, size=0x50)

The difference between these two memset() calls is that memset(0x1e0) is for a freshly
allocated buffer from nt!ExAllocatePool3(), and memset(0x50) is for buffers from both
nt!ExAllocatePool3() and ExpInterlockedPopEntrySList(). (Internally, it uses a Windows
single-linked list structure LIST_ENTRY, basically reusing previously allocated buffers.)

If we only look at the modifications to http!UlpAllocateFastTracker(), we can deduce that the
non-zero entries in the buffer (let’s call it a Tracker) might cause some unpleasant side
effects. Furthermore, since the buffer can be allocated directly from nt!ExAllocatePool3(), if
the system is experiencing memory pressure it’s possible to spray attacker-controlled data
into the memory and have the attacker-controlled data show up in the newly-minted Tracker
buffer.

3/8

The fact that memset() is called twice to the same Tracker buffer is also curious. Apparently,
the developer felt that it was necessary to zero-out a particular segment of the Tracker (from
0x2E-0x7E), even if the buffer was retrieved from a LookAside link list (where the initial
allocation would have already zeroed out all the attacker-controlled data). This means that
whatever non-zero value that triggers the bug, it should be inside the 0x2e-0x7e part of the
Tracker structure.

At this point, we have a few ideas we can try. First, we need to know under what conditions
http!UlpAllocateFastTracker() would be called. This turns out to be very easy to determine. A
single command in Ghidra (Find References to UlpAllocateFastTracker) or IDA (Jump to
xref) both show that only one function in http.sys could call UlpAllocateFastTracker().

Figure 4: Two calls to http!UlpAllocateFastTacker()

After writing some python scripts blasting HTTP requests to IIS, we determined that
http!UlFastSendHttpResponse() does what its name suggests—the function is responsible
for sending an http response back to the client. The Tracker object we saw earlier is a
structure that keeps track of various states and pointers related to that response. When we
snoop around, we can even find the response data in one of the pointers.

Figure 5: A Tracker object and the corresponding response data

After we determined how to access the initialization code, we decided to ‘help’ the exploit by
pre-writing a non-zero value to Tracker. Using Windbg, pykd and some python scripting, we
managed to inject pre-determined values into the part of Tracker that are likely to be affected
before http!UlpAllocateFastTracker() returns.

Sadly, no matter how much we ran our ‘fuzzer’, the test system remained stable and
responsive. We did, however, noticed that most of the calls to http!UlpAllocateFastTracker()
were from UlFastSendHttpResponse+0x2F0 (>90%), and only a few allocation calls were
made from UlpAllocateFastTracker+0xe99. We did a bindiff on
http!UlFastSendHttpResponse() on Windows 10’s http.sys and there’s a gigantic code
change.

Figure 6: Comparison between the patched http!UlFastSendHttpResponse() and the original
http!UlFastSendHttpResponse()

At this point we were unable to trigger the crash so we took to Twitter to look for a POC.

The Crash

Armed with a new PoC, we resumed our analysis (this time on the Windows 2022 Server)
and we soon discovered the cause of the crash that was being patched.

4/8

The crash happens at the end of the clean up phrase of http!UlFastSendHttpResponse(),
with a call to nt!MmUnampLockedPages() that tries to access invalid memory.

Figure 7: A stack trace of the crash

According to Microsoft, nt!MmUnmapLockedPages() is a Windows kernel routine that
releases a mapping between a virtual memory address and a physical memory address. The
mapping is described by a kernel structure called the Memory Descriptor List (MDL).

Figure 8: Function signature of MmUnmapLockedPages()

When we set a breakpoint on the call to nt!MmUnmapLockedPages() we started to see all
sorts of invalid memory addresses being passed in as the BaseAddress (virtual memory
address).

Figure 9: Invalid arguments for MmUnmapLockedPages()

But now the question became, what did the PoC do differently to trigger the vulnerability? To
get to the bottom of this, we needed to decompile http!UlFastSendHttpResponse() and look
at the code.

Figure 10: Decompiled vulnerable code

We were able to immediately make some guesses. We could see that the pointer v19 is
freed by UlpFreeFastTracker(). This told us that v19 is the pointer to the Tracker buffer.
Indeed, when we scrolled up and checked the two calls to http!UlpAllocateFastTracker(), we
could see that v19 is the return value from that function.

Figure 11: v19 as the returned Tracker object

At the same time, we knew the second argument for MmUnmapLockedPages() is the MDL
struct. If we check the definition of MDL (http.sys uses an internal struct definition of MDL,
but it’s the same as the kernel’s), we could see that the 0x00a field is the MdlFlags, and that
the routine checked to see if the flag’s 0 bit is 1. Finally, the 0x018 (24 in decimal) field is
the MappedSystemVa.

Figure 12: MDL definition

As an aside, according to wdm.h from Windows SDK, 0x0001 is
MDL_MAPPED_TO_SYSTEM_VA, ie. the memory mapping described by this MDL is valid.

Figure 13: MdlFlags bit field definition from Windows SDK

With these two pieces of information, we were able to construct the pseudo-code-

Figure 14: Pseudo-code of vulnerable code. The analysis will call Tracker->80 as ‘some_mdl’
from now on.

th

5/8

So, looking back at our initial guess, it was pretty good. We guessed that Tracker’s 0x2e-
0x7e needed to be non-zero, and indeed, the 0x50 pointer does have to be non-zero for this
if statement to go through.

So now, we have four new questions, ranked from the most to the least obvious:

1. Can we control the ‘some_mdl’ MDL struct data?
2. What is Tracker->member_0x50?
3. Why can the PoC reach this code when our driver couldn’t?
4. Is remote code execution possible?

Can we control the ‘some_mdl’ MDL struct data?

It turns out that, yes, the attacker does have control of the bytes in the MDL in certain
situations! We went back to http!UlpAllocateFastTracker() and stepped through every single
line of instruction, and while there are multiple MDL pointers in Tracker, the MDL at offset
0x80 is never initialized. The allocation routine simply picks sequential memory spaces after
Tracker’s struct location and has the Tracker’s MDL pointers point to these addresses. This
makes sense, as when nt!ExAllocatePool3() is called, the bytes requested are much larger
than the deduced size of the Tracker struct (Remember that the patched memset() only
writes 0s to the first 0x1e0 of the buffer.)

Figure 15: nt!ExAllocatePool3() allocated 0xc85 bytes of buffer

Figure 16: http!UlInitializeFastTrackerPool() assigning addresses to Tracker pointers

We know that 0x68, 0x70, 0x88, and 0x80 are all MDL pointers (via IDA heuristics), but only
0x68 is initialized with MmBuildMdlForNonPagedPool() in the initialization routine.

Figure 17: Tracker->0x68 pointer being initialized as a valid MDL object

Once control is returned to http!UlFastSendHttpResponse(), additional MDLs are eventually
initialized. However, the PoC discovered a code path where the initialization is skipped, with
disastrous consequences.

What is Tracker->member_0x50?

We tried to dive deeper into the code to figure out what member_0x50 does, but the object is
created outside of http!UlFastSendHttpResponse(), and was passed-by-reference to the
routine as a pointer argument.

Since the code assumes that if member_0x50 is valid then some_mdl should also be valid,
perhaps the MDL’s memory range is the backing storage for member_0x50, and both
elements should be valid (or be invalid) together.

6/8

During our testing, however, the argument that leads to member_0x50 is always null with
both our driver and the PoC. We decided to leave it at that.

Why can the PoC reach this code when our driver couldn’t?

As mentioned before, we need the execution to take a path that would not initialize
some_mdl. The PoC takes advantage of this by sending identical malformed HTTP packets
in quick succession.

There are two calls to http!UlpAllocateFastTracker(). The first call is used more than 90% of
the time. Once the Tracker structure is allocated, http!UlFastSendHttpResponse() takes over
and continues the struct initialization process. Most importantly, during the process the
member_0x50 element is zero-ed out, thus ensuring the bug would never be executed
during normal execution.

Figure 18: member_0x50 pointer is zeroed out

However, when IIS receives multiple malformed packets in quick succession, a different code
path is taken. According to our code analysis, IIS eventually abandons its (our guess)
caching mechanisms. In particular, while the first call to http!UlpAllocateFastTracker() still
happens, the allocated Tracker structure is quickly deallocated.

We are not sure why, but during the first call, a single value at Tracker->0x148 changes from
0x14 (in previous calls) to 0x0, which causes the new Tracker structure to be deallocated,
and a call to http!UlpAllocateFastTracker() is made with a different second argument.

Figure 19: First call, 0x200

Figure 20: Second call, 0x0

 (By the way, judging from the code and the PDB (program database), two other variables
“UlH3ExtraHeaderCount” and “_UX_DUO_COLLECTION” are used to determine the value.
If anyone knows what these variables do, please let us know.)

After the second allocation, a call is made to http!UlGenerateFixedHeaders(). However, the
call is cut short. The sixth argument to http!UlGenerateFixedHeaders()—the same 0x0
(normally 0x200) variable as the allocation call, causes an early check fail, resulting in an
error code 0xC000000D and a quick return.

Figure 21: The 0x0 value in the argument makes http!UlGenerateFixedHeaders() returns
with an error

After the routine returns with the error code, the execution skips most of the
http!UlFastSendHttpResponse() and goes straight to cleanup phrase. As part of the cleanup,
the vulnerable call to nt!MmUnmapLockedPages() is made, and the system crashes.

7/8

As we said earlier, a malformed HTTP packet is needed to trigger this bug. We then
wondered if other forms of malformed HTTP packets would also work. To our surprise,
almost all our test samples would crash the system. This poses a serious issue as there are
potentially many ways to attack the victim system.

Is remote code execution possible?

Since we have control of mapping any attacker-controlled memory, there is a risk of remote
code execution. Constructing such a remote code execution, however, would require more
research into what the Tracker fields do. The attacker would need to spray the memory with
fake MDLs and fake Tracker pointers (this might require another vulnerability that leaks the
kernel address info) or take advantage of the fact that there are other fields in Tracker that
are also not initialized properly.

We tried to combine the PoC with our driver program to spray the kernel memory with
attacker-controlled data. However, the probability of the sprayed content being reallocated
again and showing up in the vulnerable code is rather low; A successful remote code
execution chain might require a more accurate way to spray the memory.

Based on this analysis, we at FortiGuard have modified our IPS signatures to account for
potential malicious traffic.

Conclusion

Due to the claim that the CVE is wormable, initially there was concerns that CVE-2022-
21907 could potentially have a high impact. However, the combination that IIS is seldom
enable on Windows 10, and the fact that the attacker does not have a direct way to create
read or write primitives into kernel memory, lessen the risk somewhat.

Fortinet Protections

ForiGuard IPS protects against all known exploits associated with the CVE with the following
signature:

 MS.Windows.HTTP.Protocol.Stack.CVE-2022-21907.Code.Execution

However, due to the unpredictable nature of malformed HTTP packets, we strongly urge
organizations to apply the corresponding patches as quickly as possible to avoid service
disruption. FortiGuard Labs will continue to monitor the CVE and apply new
countermeasures when necessary.

Appendix:

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21907

https://twitter.com/wdormann/status/1488148028317917186

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21907
https://twitter.com/wdormann/status/1488148028317917186

8/8

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-
mmunmaplockedpages

Related Posts

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmunmaplockedpages
https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

