
1/21

February 12, 2022

Full Hancitor malware analysis
muha2xmad.github.io/malware-analysis/fullHancitor/

Muhammad Hasan Ali

Malware Analysis learner

12 minute read

As-salamu Alaykum

Introduction

Hancitor is a famous malware loader that has been in use for years since first being observed in 2015. A
malware loader drops the actual malicious content on the system then executes the first stage of the
attack. Hancitor has been the attacker’s loader of choice to deliver malwares like: FickerStealer, Sendsafe,
and Cobalt Strike if the victim characteristics are met. In recent months, more threat intelligence has been
gathered to confirm the selection of Hancitor by Cuba Ransomware gangs as well. The popularity of
Hancitor among threat actors is considered to last for a while. ref

https://muha2xmad.github.io/malware-analysis/fullHancitor/
https://blog.group-ib.com/hancitor-cuba-ransomware

2/21

Figure: How Hancitor infection happens. *paloaltonetworks photo

Unpacking process

We tried in a later article to unpack Hancitor malware. see it from Here. But we will try another way to
unpack it in this sample. Open the sample in the x32dbg and set two BPs on VirtualAlloc and
VirtualProtect then run F9 . We hit VirtualAlloc and then Execute till return then Follow
in Dump of EAX. Keep doing that to hit the VirtualProtect BP we will see M8Z an indicator of Aplib
compression.

https://muha2xmad.github.io/unpacking/hancitor/

3/21

Figure:

Then if we scroll down to the offset xx4380 we will get the MZ string which is the start of our unpacked file
used in the analysis. Then save it to a file to start the analysis.

Abnormal Entry point

In Hancitor, there are 3 exports BNJAFSRSQIX , SDTECHWMHHONG , DllEntryPoint . And the first two
functions have the same address. For the first thought the entry point will be DllEntryPoint , but if we
check this function it only returns 1. From the malicious document which we extract the maliciuos Hancitor
malware. Launched the rundll32.exe command to execute the BNJAFSRSQIX function, so it must be the
real entry point for this DLL.

Figure(1):

Gathering victim information

We enter BNJAFSRSQIX we see a call to a function which i renamed it to Hancitor_Main . Then enter
sub_10001AA0 renamed info_gathering . First the malware gathers information about the host

contains: OS version, Computer name, Domains names, Victim IP address, whether the machine is x64 or
x86 OS.

4/21

Figure(2):

Figure(3): pseudocode of figure 2

5/21

Then we enter getVictimID then enter sub_10001C70 which is the function that generates a unique ID
for the victim. First, calling GetAdaptersAddresses to get the addresses associated with the network
adapters on the victim machine then XOR-ing each (MAC) adapter with its address together. And calling
GetVolumeInformationA to retrieve the volume serial number of the machine then XORs it with the
result to create the victim’s unique ID.

Figure(4): pseudocode of sub_10001C70 function

How to get the IP of the victim? By sending a GET request to hxxp://api[.]ipify[.]org . If the
malware is unable to contact the website, it uses 0.0.0.0 as the victim’s IP address.

Figure(5):

Then the final gathering step is to concatinate the gathered victim’s information in two ways to be sent to
C2 server:

GUID=<Victim's GUID>&BUILD=<Build ID>&INFO=<Machine Information>&EXT=<Network domain names>&IP=
<Victim's IP address>&TYPE=1&WIN=<Windows major version>.<Windows minor version>(x64)

GUID=<Victim's GUID>&BUILD=<Build ID>&INFO=<Machine Information>&EXT=<Network domain names>&IP=
<Victim's IP address>&TYPE=1&WIN=<Windows major version>.<Windows minor version>(x32)

6/21

Figure(6):

Configuration Extraction

Manually Extraction

Malware authors use tricks to obfuscate thier C2 IoCs. One of them is to encrypt it into a big chunk of data
as in Hancitor Malware. So we need to search for big chunk of data which later will be decrypted during
the runtime. We will find our encrypted configuration in the begining of .data section and if we select the
hex values then press D we see it has refernces which means that it’s used somewhere.

7/21

Figure(7):

There are two chunks of data Pbdata and byte_10005018 . If we press x over one of them it takes us
to a function which will be called mw_Decrypt_Data which is the function decrypts the configuration of
the malware. And these two chuncks of data are parameters in this function.

Figure(8):

Now enter this mw_Decrypt_Data function. We see there are 5 API calls:

CryptCreateHash : initiates the hashing of a stream of data.CryptCreateHash the 2nd parameter is
Algid which identifies the hash algorithm to use. Its value is 0x8004u which used SHA1 see the

decumentation of Algid

CryptDeriveKey : generates cryptographic session keys derived from a base data value CryptDeriveKey
the 2nd parameter is Algid Its value is 0x6801u which used RC4

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptcreatehash
https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id#:~:text=Base%20Cryptographic%20Provider.-,CALG_SHA1,-0x00008004
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptderivekey

8/21

The 4th parameter is dwflags which determinte the size of the key which the key is a set with the upper
16 bits of 0x280011u which is 0x28 divided by 8. Then the key size is 5 bytes.

Figure(9):

We get the SHA1 key from pbdata . And we get the RC4 data from byte_10005018 and decrypte the
RC4-encrypted data using the first 5 bytes of the SHA1 key.

*How we select hex values only? Do as in the figure 9. then choose hex string (unspaced) . then copy
what is in the preview .

Figure(10):

Then open cyberchef using from hex and SHA1 we get the SHA1 key
ad818c687f8dc7f281135753e567eababa03d0ba . Then select the whole chunck of data of
byte_10005018 and copy hex as we did in SHA1 and use RC4 and using the first 5 bytes of SHA1.

https://gchq.github.io/CyberChef/

9/21

Figure(11):

Here are 3 C2 servers which the malware communicate with for further commands based on the collected
victim host information. Build ID 2909_xplw .

hxxp://forkineler(.)com/8/forum.php

hxxp://yemodene(.)ru/8/forum.php

hxxp://fordecits(.)ru/8/forum.php

Automated Extraction

Figure(12):

10/21

import pefile #Parse data into a PE format
import re #Use a regular expression to locate our config data
import struct # Convert binary data into numeric values.
import hashlib #Generate a SHA1 hash

file_path = r'file path' #file path
data = open(file_path,'rb').read() # read it in binary
pe = pefile.PE(data=data) # to parse data as PE file to acess sections and offsets

Use Regular Expression to Locate The Decryption Code
key = rb'\x6a(.)\x68(....)\x68\x00\x20\x00\x00' #opcode as in the figure(6).
m = re.search(key, data) # extract the data that was matched by the wildcard.
if m != None:
 print("key length: %r" % m.group(1))
 print("key address: %r" % m.group(2))

Convert The Extracted Key Information
struct.unpack('b', m.group(1))[0] #converte into bytes
hex(struct.unpack('<I', m.group(2))[0]) # converting an unsigned integer (DWORD) stored in little-
endian format in hex

Use The Key Information To Extract The Key Data
key_len = struct.unpack('b', m.group(1))[0]
key_address = struct.unpack('<I', m.group(2))[0]
key_rva = key_address - pe.OPTIONAL_HEADER.ImageBase
key_offset = pe.get_offset_from_rva(key_rva)
key_data = data[key_offset:key_offset+key_len]
config_data = data[key_offset+key_len:key_offset+key_len+0x2000]

Hash The Key Data To Create The Key
m = hashlib.sha1()
m.update(key_data)
key = m.digest()[:5]

RC4 Decryption
def rc4crypt(data, key):
 #If the input is a string convert to byte arrays
 if type(data) == str:
 data = data.encode('utf-8')
 if type(key) == str:
 key = key.encode('utf-8')
 x = 0
 box = list(range(256))
 for i in range(256):
 x = (x + box[i] + key[i % len(key)]) % 256
 box[i], box[x] = box[x], box[i]
 x = 0
 y = 0
 out = []
 for c in data:
 x = (x + 1) % 256
 y = (y + box[x]) % 256
 box[x], box[y] = box[y], box[x]
 out.append(c ^ box[(box[x] + box[y]) % 256])
 return bytes(out)

Parsing The Config
config = rc4crypt(config_data, key)
build_id = config.split(b'\x00')[0]
c2_string = b''
for s in config.split(b'\x00')[1:]:
 if s != b'':
 c2_string = s

11/21

 break
c2_list = c2_string.split(b'|')
print("BUILD: %s" % build_id)
for c2 in c2_list:
 if c2 != b'':
 print("C2: %s" % c2)

For better understanding visit OALabs github

C2 server Communication

After collecting all victim information and put into one fourm as we mentioned above. the malware tries to
get the C2 URL from the configuration and sends the data to C2 the servers. If we enter the function
getNext_URL . It tries to get the next URL address from the list using the location of | between the C2

servers.

Figure(13):

Then we enter send_Data_To_C2 function, we see 3 API calls which are an indication of sending data to
C2 server:

HttpOpenRequestA: Creates an HTTP POST request handle.

HttpSendRequestA: Sends the specified request or data to the HTTP server.

InternetReadFile: Reads data or commands from a handle opened by the HttpOpenRequest function.

https://github.com/OALabs/Lab-Notes/blob/main/Hancitor/hancitor.ipynb
https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-httpopenrequesta
https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-httpsendrequesta
https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetreadfile

12/21

Figure(14):

From PCAP of Malware-Traffic-Analysis.net. We ping the 1st C2 server (
hxxp://forkineler(.)com/8/forum.php) to get the IP 194.147.115.132 which will help us to get the C2
response. Open the PCAP file and search with ip.addr == 194.147.115.132 then follow then TCP
stream . As we see POST and GET request and base64 encoded response. base64 encoded C2
response:
VZAEARZAEg4OCkBVVU4XGw8IChUUDlQID1VOSwlUGBMUBwEWQBIODgpAVVVOFxsPCAoVFA5UCA9VTktUGBMUBw== .

Then enter check_C2_response function: first it checks the 1st 4 chars IsUpperCase? if Not in upper
case the check fails and return 0.

Figure(15):

https://www.malware-traffic-analysis.net/2021/09/29/index.html

13/21

If the check is valid then it decodes the base64 C2 response and XORs the result with the letter z using
CyberChef .

Figure(16):

As we see in the last figure the response command contains:

A specific action from `{'b','e','l','n','r'}`

A colon (:) char

A URL is used to download malicious content

Figure(17):

Download content and inject

Explaining the set of actions the malware will do from {'b','e','l','n','r'} .

14/21

Figure(18):

b action

The downloaded content will be injected into a new svchost.exe process using the APIs:
VirtualAllocEx and WriteProcessMemory . First the malware downloads content, as in the
download_content function, from the malicious URL in the C2 response then inject it into a new
svchost process.

Figure(19): action: download_inject_into_New_svchost function

Entering download_content then entering decrypt_decompress_downloadedContent . We will see
that it’s trying to decrypt the downlaoded content by XOR-ing with its first 8 bytes then using
RtlDecompressBuffer function to decompress. See doc then continue

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtldecompressbuffer

15/21

Figure(20): decrypt_decompress_downloadedContent function

Figure(21): using CreateProcessA to create a suspended svchost process

using VirtualAllocEx to allocate a buffer in the memory, then w_HeapAlloc to allocate a heap buffer,
and then WriteProcessMemory to write the payload from the heap to svchost allocated memory.

16/21

Figure(22): using CreateProcessA to create a suspended svchost process

Figure(23): the entryPoint of svchost is the entryPoint of injected malicious content

b action in brief:

1. Download the malicious content from the URL.

17/21

2. Decrypting and decompress the content.
3. create svchost in a suspended state.
4. Allocate a buffer in the memory for the malicous content.
5. Load the malicious content into the allocated buffer.
6. Make the entryPoint of the injected malicous content is the entryPoint of svchost.exe process
7. Then resume the process

e action

The downloaded content will be injected into the current running process. Download then inject.

Figure(24): Download then inject into the currently running process

18/21

Figure(25): Loading the import table

e action in brief:

1. Download the malicious content from the URL.
2. Decrypting and decompress the content.
3. Allocate memory for the content in the current running process.
4. Load import table
5. Load the malicious content into the allocated buffer.
6. launch the thread using two methods:

using CreateThread which resolves the entryPoint Or
using the returned entryPoint after writing the content in memory.

i action

Downloads shellcode and inject it into the current process or into svchost.exe .

19/21

Figure(26): How injecting and executing the shellcode using i action

i action in brief:

1. Download the shellcode from the URL.
2. Decrypting and decompress the content which is shellcode.
3. inject the shellcode by one methode:

Creating svchost.exe process then inject the process then resumes the process. Or
Inject into the current running process.

n action

Does nothing, or it’s used to ping the victim.

r action

Drop an EXE or DLL in the Temp folder then inject into svchost.exe .

20/21

Figure(27): How injecting and executing the content using r action

r action in brief:

1. Download the the content from the URL.
2. Decrypting and decompress the content.
3. Gets the path of TEMP folder and create a file and its random name begins with BN in the path of

TEMP folder.
4. Execute the downloaded content which depends on if it’s an EXE or DLL:

An EXE it will be executed normally.
a DLL executed by using rundll32.exe .

Summary

Abnormal Entry point: DllEntryPoint is not the real entryPoint, but BNJAFSRSQIX is the EnryPoint.

Gathering victim information: Gatheing info about the victim which gives choice for the malware to
generate unique ID and downlaod which content.

Configuration Extraction: The key is encrypted in SHA1 and the embedded configuration encrypted in
RC4. The malware uses CryptoAPI to do the decryption using the first 5 bytes of the SHA1 key.

C2 server Communication: The victim information will be sended to the C2 server. After decoding the
base64 encoded with additional layer of single-byte XOR C2 response. The decoded C2 response has
Build ID and URLs from which the malicous content is downloaded.

Download content and inject: From the decoded C2 response, the malware will decide which content
will be downlaoded then injected then executed. If it’s a malicious EXE, DLL, or shellcodes.

IoCs

No. Description Hash and URLs

1 The packed DLL (MD5) 32799A01C72148AB003AF600F8EB40DC

2 The unpacked DLL (MD5) B7679D55FC9B5F3447FF743EEAAB7493

3 C2 response server hxxp://4maurpont.ru/41s.bin (194.147.115.132)

4 C2 Server 1 hxxp://forkineler(.)com/8/forum.php

21/21

No. Description Hash and URLs

5 C2 Server 2 hxxp://yemodene(.)ru/8/forum.php

6 C2 Server 3 hxxp://fordecits(.)ru/8/forum.php

Article quote

سبحانك! ما أضیق الطریق عليّ ما لم تكن دلیله! وما أوحشه عليّ مَن لم تكن أنیسه

REF

1. https://cyber-anubis.github.io/malware%20analysis/hancitor/#the-b-command

2. https://www.0ffset.net/reverse-engineering/malware-analysis/hancitor-analysing-the-main-loader/

3. https://www.youtube.com/watch?
v=OQuRwpUTBpQ&list=PLGf_j68jNtWG_6ZwFN4kx7jfKTQXoG_BN&index=9&t=2s&ab_channel=O
ALabs

4. https://www.binarydefense.com/analysis-of-hancitor-when-boring-begets-beacon/

5. https://elis531989.medium.com/dissecting-and-automating-hancitors-config-extraction-
1a6ed85d99b8

https://cyber-anubis.github.io/malware%20analysis/hancitor/#the-b-command
https://www.0ffset.net/reverse-engineering/malware-analysis/hancitor-analysing-the-main-loader/
https://www.youtube.com/watch?v=OQuRwpUTBpQ&list=PLGf_j68jNtWG_6ZwFN4kx7jfKTQXoG_BN&index=9&t=2s&ab_channel=OALabs
https://www.binarydefense.com/analysis-of-hancitor-when-boring-begets-beacon/
https://elis531989.medium.com/dissecting-and-automating-hancitors-config-extraction-1a6ed85d99b8

