
1/18

0x00-0x7F blog February 11, 2022

Netwalker: from Powershell reflective loader to injected dll
0x00-0x7f.github.io/Netwalker-from-Powershell-reflective-loader-to-injected-Dll/

Hi! I have lately started delving into maliious powershell payloads and came across a really intriguing
powershell loader for “Netwalker ransomware”, performing fileless attack. Fileless techniques enable attackers
to directly load and execute malicious binary in memory without actually storing it on disk by abusing available
legitimate tools on victim machine. Such threats leave no trace of execution and are capable of evading any
traditional security tools. This post thoroughly discusses how first stage powershell script filelessly loads and
executes embedded payload through reflective Dll injection.

SHA-256 hash of the sample being analyzed:
f4656a9af30e98ed2103194f798fa00fd1686618e3e62fba6b15c9959135b7be

Prior knowledge required:

Basic Powershell understanding
using .NET reflection to access Windows API in PowerShell
Windows APIs for Process/Dll injection

This is around ~5 MBs of powershell script using three layers of encoding, encryption and obfuscation
respectively to hide ransomware dll and supporting powershell commands for reflective Dll injection. The
uppermost layer executes very long base64 encoded command (screenshot covers only a small portion of this
command)

Processing Base64 encoded layer 1

In order to get decoded output from initial script, I shall run powershell script into my VM’s Powershell ISE but
as the Invoke-Expression cmdlet will process base64-encoded payload and execute the ransomware therefore,
I’ll modify the script for debugging by replacing this comdlet with a variable to store result of base64 decoded
command and dump output in a file as shown in the figure below

Processing Encrypted layer 2

https://0x00-0x7f.github.io/Netwalker-from-Powershell-reflective-loader-to-injected-Dll/
https://labs.sentinelone.com/netwalker-ransomware-no-respite-no-english-required/
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/security-101-how-fileless-attacks-work-and-persist-in-systems
https://bazaar.abuse.ch/download/f4656a9af30e98ed2103194f798fa00fd1686618e3e62fba6b15c9959135b7be/

2/18

base64 decoded second layer once again contains a very long bytearray in hex format which is processed in
two steps

1) bytearray contents are decrypted in a for loop with 1 byte hardcoded xor key

2) decrypted contents are stored as ASCII string in another variable in order to be able to create scriptblock for
decrypted contents and execute it using Invoke-Command cmdlet

but I shall also modify second layer to get decrypted layer three contents and dump result into another output
file as shown in the figure below

3/18

decryptedlayer3.ps1 now contains the obfuscated layer three powershell script embedding ransomware dlls in
bytearrays and other commands to process the malicious payload

Processing Obfuscated layer 3

Let’s start digging into layer three powershell script which is quite obfuscated having lengthy and random string
variable and routine names responsible to drop final payload. It is required to perform following steps in order to
execute Netwalker ransomware on victim’s machine

define variables to invoke in-memory Windows API function calls without compilation
define routines to load dll without using Windows loader
detect environment
get PID of a legitimate process from a list of running processes and inject payload via custom loader
delete shadow copies

First off, it defines required variables and routines:

to invoke in-memory Windows API function calls without compilation, C# code to declare structs and
enums for memory manipulation is defined inside a variable as shown below

and to invoke kernell32.dll APIs using wrapper .Net methods available in powershell

4/18

final command in this case will let us instantiate objects by making Microsoft .Net core classes available in our
powershell session and ensure ransomware’s true memory residence through reflection.

Following set of routines help correctly compute required memory addresses and relocations by casting
integer datatypes (signed integers to Unsigned integers and vice versa) so that the script could act as its own
custom loader and load dll without using Windows loader

Finally it defines a bunch of routines to write embedded malicious binary into another process’s memory and
execute it.

Script starts its execution by detecting underlying processor’s architecture to know whether it is running on x86
or amd64 and to prepare 32-bit or 64-bit dll accordingly using following if-else block

5/18

[byte[]]$EbihwfodUZMKtNCBx = $ptFvKdtq
$aukhgaZFiPJBarSpJc = $false
if ((Get-WmiObject Win32_processor).AddressWidth -eq 64)
{
[byte[]]$EbihwfodUZMKtNCBx = $GxwyKvgEkr
$aukhgaZFiPJBarSpJc = $true
if ($env:PROCESSOR_ARCHITECTURE -ne 'amd64')
 {
 if ($myInvocation.Line)
 {
 &"$env:WINDIR\sysnative\windowspowershell\v1.0\powershell.exe" -ExecutionPolicy ByPass -
NoLogo -NonInteractive -NoProfile -NoExit $myInvocation.Line
 }
 else
 {
 &"$env:WINDIR\sysnative\windowspowershell\v1.0\powershell.exe" -ExecutionPolicy ByPass -
NoLogo -NonInteractive -NoProfile -NoExit -file "$($myInvocation.InvocationName)" $args
 }
 exit $lastexitcode
 }
}

later it allocates memory in current process’s address space and starts writing dll on the allocated memory
using following for loop

for($dxQpkwU = 0; $dxQpkwU -lt $TKgfkdkQrLMAN.KGcnFrQVhkckQriBC.nKkeCknfm; $dxQpkwU++)
{
 $PdWhwldJHtQhtsMJe = [System.Runtime.InteropServices.Marshal]::PtrToStructure(
$lItUIbvCvHxzMmrKtX,[Type][Fvh.wTEWKRjOqBX])
 $rZKYDiOJE = RBeMnMHvnbNEob $eIr $(ULhnbcyXERLvVtGXUp $PdWhwldJHtQhtsMJe.sUtYsMhA)
 $MxyiIYGMhxakrDbKyjL = RBeMnMHvnbNEob $upEcLTMCGhc $(ULhnbcyXERLvVtGXUp
$PdWhwldJHtQhtsMJe.cymIspbCOaY)
 $mofiZSsnxylxNuA = $AaauDVCQMlKUXx::PMUN($VxxHhZYpWSgsPvKNuDx, $MxyiIYGMhxakrDbKyjL, $rZKYDiOJE,
$PdWhwldJHtQhtsMJe.mkvugoDzrJgTSSJp, [ref]([UInt32]0))

 if ($mofiZSsnxylxNuA -eq $false)
 {
 return
 }
 $lItUIbvCvHxzMmrKtX = RBeMnMHvnbNEob $lItUIbvCvHxzMmrKtX
$([System.Runtime.InteropServices.Marshal]::SizeOf([Type][Fvh.wTEWKRjOqBX]))
}

snapshot of object containig dll that gets written into current process’s memory

6/18

after that it calls following routine with certain parameters to inject payload by specifying a legitimate target
process which is ‘explorer.exe’ in this case along with memory location pointer for buffer containg Dll and size
of the buffer containing dll

this routine finds PID of explorer.exe form a list of running processes and passes obtained PID to final routine

7/18

which first reflectively injects ransomware dll into explorer.exe by allocating a chunk of memory of specified size
into its address space and writing ransomware dll on the allocated memory and then executes it by creating a
thread that runs in the virtual address space of Explorer.exe process

8/18

and in the end deletes shadow copies of the data being held on the system at that particular time to completely
eliminate any possibility of recovering it and performs required memory cleanup using following set of
commands

as soon as script exits, FE026B-Readme.txt window appears on the system with ransom message and all
encrypted files with fe026b extension are no longer accessible

Note: Ransomware dll being injected can be dumped into a binary file in powershell script, which has SHA-256
302ff75667460accbbd909275cf912f4543c4fb4ea9f0d0bad2f4d5e6225837b hash but it can be seen that it is
64-bit PE file and first two bytes in this case have wrong hex value 0xDEAD

https://www.virustotal.com/gui/file/302ff75667460accbbd909275cf912f4543c4fb4ea9f0d0bad2f4d5e6225837b/detection

9/18

replacng first two bytes 0xDEAD with 0x4D5A in DOS header in HxD editor would result in Netwalker
ransomware dll with f93209fccd0c452b8b5dc9db46341281344156bbedd23a47d2d551f80f460534 SHA-256
hash.

Deciphering Netwalker x86-64 DLL

Let’s load final dll in IDA and perform basic static analysis first, I’ll start by looking up for strings, but they are
mostly useless, moreover, it has only one export i.e., main entry which seems to implement all its functionality

second important thing to note here is that it has no imports address table, which implies that it might be
obfuscating APIs or strings with some hashing or encryption algorithm, this can be verified by loading the dll in
PEiD and looking for possible algorithms in its Krypto ANALyzer plugin which shows multiple references to
different encoding, hashing and encrypt/decrypt algorithms in dll as shown in the figure below

https://www.virustotal.com/gui/file/f93209fccd0c452b8b5dc9db46341281344156bbedd23a47d2d551f80f460534/detection

10/18

If I randomly pick a CRC32 reference and look it up in dll, it is found in sub_180005D60 routine being used in a
loop

11/18

do-while loop in decompiled routine shows CRC32 division flow

let’s rename this routine to crc32_checksum and look for its cross references, result shows it is cross
referenced two times in sub_180001000, if this routine is subsequently checked for further cross references, it
shows ~165 references

12/18

we can assume here that the routine sub_180001000 being cross referenced ~165 times is possibly decrypting
strings, I’ll rename it to decrypt_strings

now let’s take a closer look at sub_180001490 routine which almost has all the Xrefs to decrypt_strings,
following code shows it is taking two arguments v1, which is being used in all of its calls and a 4-byte hex value
which seems to be CRC32 hash and retrun value is being stored to different offsets of an array

13/18

this routine has multiple similar code blocks but with different hash values, here it can be assumed that it is
decrypting APIs from different libraries, let’s rename it to resolve_imports and look for its Xrefs which leads to
DLL’s main DllEntryPoint routine - now it’s time to look into it dynamically.

First routine that is being called by DLL is resolve_imports, which in turn calls sub_180001310 routine, it is
taking 0x84C05E40 hash value as parameter, a quick Google search shows it is for “ntdll.dll” which can also
be verified with Python

this routine returns handle for ntdll.dll library, later it takes another hash value 0xA1D45974 which is resolved
to RtlAllocateHeap API, it is first called to allocate a block of memory on heap to later store resolved
addresses there on different array indexes

this routine decrypts and resolves serveral APIs from ntdll.dll, kernel32.dll, advapi32.dll, use32.dll, mpr.dll,
shell32.dll, netapi32.dll, ole32.dll, oleaut32.dll and psapi.dll libraries. I wrote a simple IDAPython script here
which resolves CRC32 hashes and adds resolved value in comment

https://github.com/0x00-0x7F/IDAPython_scripts/blob/master/netwalker_crc32hash_resolver.py

14/18

after resolving imports, it continues to check for stomped MZ header 0xDEAD by first copying header value
0xDEAD in eax, setting up rbx with a certain address and later subtracting 0x400 from rbx in each iteration to
reach image’s base address as shown by the loop in figure below

if 0xDEAD header value is intact (i.e., making sure DLL is being run injected in explorer.exe), it continues
further to fix MZ header in memory and read image’s resources - otherwise it’ll throw ACCESS_VIOLATION
exception and exits

15/18

after required resource has been loaded in memory, sub_18000EAF0 routine processes it by first extracting
first 4 bytes of data which is probably length of key, next 7 bytes (cZu-H!<) are extracted as RC4 key which is
being used to decrypt rest of the payload - following code from sub_18000EAF0 routine implemets 3
recognizable RC4 loops 1. Initialization (creating Substitution Box) 2. Scrambling Substitution box with key
to generate a pseudo-random keystream 3. xoring keystream with rest of the data

16/18

decrypted data seems to be malware’s embedded configuration in json format

17/18

this can also be verified by copying resource as hex string along with 7-byte hex key on Cyberchef

next routine sub_180004600 parses configuration to get list of file extensions which needs to be encrypted,
default paths and files that should be whitelisted, attacker’s ToR info and ransomware note along with
ransomware note file name and format, subsequent routines decrypt ransom note with AES decryption
algorithm by using 256-bit hardcoded key, checks running processes to kill any blacklisted process and
eventually performs ransomware activity.

That’s it. See you next time.

Sources:

18/18

1. https://blog.trendmicro.com/trendlabs-security-intelligence/netwalker-fileless-ransomware-injected-via-
reflective-loading/

2. https://any.run/report/f4656a9af30e98ed2103194f798fa00fd1686618e3e62fba6b15c9959135b7be/ca44ad38-
0e46-455e-8cfd-42fb53d41a1d

