
1/10

itaymigdal

Brbbot
github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/Brbbot.md

Malware
Name

File
Type SHA256

Brbbot x64
exe

F9227a44ea25a7ee8148e2d0532b14bb640f6dc52cb5b22a9f4fa7fa037417fa

Analysis process

First thing first, I started Procmon in order to get an idea of the malware main activities:

Two interesting operations that were seen, were dropping a config file and self-copying
to \AppData\Roaming\ path. Opening the file in Pestudio we see that the file is
packed using UPX:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/Brbbot.md
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/1.png

2/10

Trying to unpack it using UPX will throw an error:

This suspicious error indicates that the malware packed using UPX but then modified in
such a way that the tool would not be able to unpack it back again. If we pay attention
closely to the image above, we can see that one section renamed to NPX0 (it should be
UPX0). Therefore, there are two ways to unpack the malware:

Modify the PE file on disk by renaming the section NPX0 → UPX0, then try to
unpack using UPX tool again (at the end of this WriteUp)
Unpack it in memory using a debugger.

It is Important to note that the first method suitable just for very specific cases, most
malware would be packed with custom & unknown packers, therefore, unpacking them
must occur in memory.

So, dropping the sample to x64dbg...

A known trick (suitable for packers that work like UPX) to find OEP (Original Entry Point)
is to locate a jmp opcode followed by a bunch of NULL bytes, that jumps high and far to
a distant location. This is the point where the code decrypted / decompressed / decoded
itself in memory and now jumping to the real deal – OEP.

So found it and break on it:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/2.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/3.png

3/10

Single-step and we landed at OEP:

Now we are at the entry point of the real malware business, and all the imports should
be resolved by the UPX loader in that point, so we use the built-in tool Scylla to rebuild
the IAT and dump the unpacked malware to disk:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/4.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/5.png

4/10

We can see now new suspicious libraries and imports that were not there on the packed
file.

Observing the strings of the dumped file reveals some gems:

There is a malware config file named brbconfig.tmp (that we already saw under
procmon).
Autorun key for persistense
User-agent that indicated on a http request

Looking at the resources:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/6.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/7.png

5/10

We can see a "CONFIG" resource, saving to disk:

eeergg! probably encrypted...

Sooo.. moving back again to debugging:

There is a call to IsDebuggerPresent , not quite sure if this is an anti-debugging
attempt (if it is, it's really poor one) or part of the compiler nonsense, so anyway we'll
use ScyllaHide:

Spraying some BP's on some interesting API calls:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/8.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/9.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/10.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/11.png

6/10

First BP we encountered is CryptDecrypt :

This API call is used to decrypt blob of encrypted data (in conjuction with some more
API calls from the CryptXXXX family). Malware often use this call to decrypt a payload,
a config, or a dropped file.

As we can learn from MSDN the fifth argument (the grey one in the stack view) points to
the blob of the encrypted data (in the memory dump view).

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/12.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/13.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/14.png

7/10

So, single-stepping over that call should decrypt that blob:

Vwallaaa !! this is the clear config :)

Config content:

"uri=ads.php;exec=cexe;file=elif;conf=fnoc;exit=tixe;encode=5b;sleep=30000"

uri - the uri for the panel file on the c2
exec, file, conf, exit - maybe bot commands?!
encode - single byte key that will use us later on
sleep - sleep amount for some point

Keep debugging:

Malware is trying to call home :)

The stack arguments for InternetConnectA :

The MSDN for InternetConnectA :

Second argument on the stack is our nice c2 address:

brb.3dtuts.by

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/15.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/16.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/17.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/18.png

8/10

The content that sent to the c2 was found nearby in memory using Process Hacker:

The malware exfiltrating the internal ip address, hostname and some encoded data.

Playing a little bit around with the encoded data and with the single byte key that
retrieved before, brought me to write a little python script to Hexdump the decoded data
(the receipt is: unhex the data --> xor with the single byte key):

The malware send the process list to the c2.

Rest of the malware functionality comes down to this:

Read a file from the c2:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/19.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/Brbbot-decode-traffic.py
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/20.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/21.png

9/10

Create a new process:

Both implies that the infection isn't over and the party continues with the next stage :)

Bonus – unpacking on disk

Locate renamed section with a hex editor, and rename it to original:

Save:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/22.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/bonus_1.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/bonus_2.png

10/10

Unpack using UPX tool:

https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/bonus_3.png
https://github.com/itaymigdal/malware-analysis-writeups/blob/main/Brbbot/img/bonus_4.png

