
1/19

Exploring Windows UAC Bypasses: Techniques and
Detection Strategies

elastic.github.io/security-research/whitepapers/2022/02/03.exploring-windows-uac-bypass-techniques-detection-
strategies/article/

Windows Internals

https://elastic.github.io/security-research/whitepapers/2022/02/03.exploring-windows-uac-bypass-techniques-detection-strategies/article/
https://elastic.github.io/security-research/tags/#windows-internals

2/19

@sbousseaden 2022-02-07

Malware often requires full administrative privileges on a machine to perform more impactful
actions such as adding an antivirus exclusion, encrypting secured files, or injecting code into
interesting system processes. Even if the targeted user has administrative privileges, the
prevalence of User Account Control (UAC) means that the malicious application will often
default to Medium Integrity, preventing write access to resources with higher integrity levels.
To bypass this restriction, an attacker will need a way to elevate integrity level silently and
with no user interaction (no UAC prompt). This technique is known as a User Account
Control bypass and relies on a variety of primitives and conditions, the majority of which are
based on piggybacking elevated Windows features.

Example of cscript.exe running as Medium spawning a cmd.exe instance with High
integrity via a UAC bypass:

https://github.com/sbousseaden
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/images/uacconsentprompt.gif
https://attack.mitre.org/techniques/T1548/002/

3/19

Most of UAC validation logic is implemented in the Application Information (AppInfo) service.
A great primer about the elevation conditions and the different checks can be found here.

In this blog post, we will take a look at a collection of UAC bypasses, investigate some of the
key primitives they depend on, and explore detection opportunities.

UAC Bypass Methods¶

UAC bypass methods usually result in hijacking the normal execution flow of an elevated
application by spawning a malicious child process or loading a malicious module inheriting
the elevated integrity level of the targeted application.

There are some other edge cases but the most common hijack methods are :

Registry Key Manipulation¶

The goal of manipulating a registry key is to redirect the execution flow of an elevated
program to a controlled command. The most abused key values are related to shell open
commands for specific extensions (depending on the targeted program) or
windir/systemroot environment variables manipulation:

HKCU\\Software\\Classes\<targeted_extension>\\shell\\open\command

(Default or DelegateExecute values)
HKCU\\Environment\\windir

HKCU\\Environment\\systemroot

https://medium.com/tenable-techblog/uac-bypass-by-mocking-trusted-directories-24a96675f6e
https://www.tiraniddo.dev/2017/05/exploiting-environment-variables-in.html

4/19

For instance, when fodhelper (a Windows binary that allows elevation without requiring a
UAC prompt) is launched by malware as a Medium integrity process, Windows automatically
elevates fodhelper from a Medium to a High integrity process. The High integrity
fodhelper then attempts to open an ms-settings file using its default handler. Since the
medium-integrity malware has hijacked this handler, the elevated fodhelper will

execute a command of the attacker’s choosing as a high integrity process.

5/19

Below is an example of Glupteba malware leveraging this method to first elevate from a
Medium to High integrity process, then from High to System integrity via Token Manipulation
(token stealing):

An example of a UAC bypass that manipulates the Windows environment variables registry
key is byeintegrity5. To illustrate this, this bypass uses this primitive to redirect the normal
execution flow of the CDSSync scheduled task (set to Run with highest privileges) and
elevate the integrity level as shown below.

When the CDSSync scheduled task is run, taskhostw.exe will try to load npmproxy.dll
from the %windir%\System32 folder, but because the malware controls %windir% , it can
redirect taskhostw.exe to load a DLL named npmproxy.dll from a path it controls as
shown below.

https://malpedia.caad.fkie.fraunhofer.de/details/win.glupteba
https://lengjibo.github.io/token/
https://github.com/AzAgarampur/byeintegrity5-uac

6/19

UAC bypasses based on environment variable manipulation often work when UAC is set to
Always Notify (the maximum UAC level) as they often don’t involve writing files to secured
paths or starting an autoElevated application. Changes to SystemRoot or Windir from
the current user registry to non-expected values are very suspicious and should be a high-
confidence signal for detection.

DLL Hijack¶

The DLL hijack method usually consists of finding a missing DLL (often a missing
dependency) or winning a DLL file write race by loading a malicious DLL into an elevated
process. If UAC is enabled but not set to Always Notify, then malware can perform an
elevated IFileOperation (no UAC prompt) to create/copy/rename or move a DLL file to a
trusted path (i.e System32), then trigger an elevated program to load the malicious DLL
instead of the expected one.

The IFileOperation is performed by dllhost.exe (COM Surrogate) with
process.command_line containing the classId { 3AD05575-8857-4850-9277-
11B85BDB8E09 }.

https://docs.microsoft.com/en-us/windows/win32/api/shobjidl_core/nn-shobjidl_core-ifileoperation

7/19

We can use the following EQL correlation to link any file operation by dllhost.exe
followed by loading a non-Microsoft signed DLL into a process running with system integrity:

EQL search - UAC bypass via IFileOperation (Medium to System Integrity)

sequence by host.id
[file where event.action in ("creation", "overwrite", "rename",
"modification") and

 /* IFileOperation are performed by DllHost */
 process.name : "dllhost.exe" and user.id : "S-1-5-21-*" and

 /* executable file dropped via NewItem, Rename, Move or
 Copy IFileOperation */ (file.extension : "dll" or
 file.Ext.header_bytes : "4d5a*") and

 /* protected system paths usually abused via DLL search order hijack */
 file.path : ("?:\\Windows\\system32*",
 "?:\\Windows\\syswow64*",
 "?:\\Program Files (x86)\\Microsoft*",
 "?:\\Program Files\\Microsoft*"
)] by file.path
[library where
 /* non MS signed DLL loaded by a System Process */
 user.id : "S-1-5-18" and
 process.executable :
 ("?:\\Windows\\system32*",
 "?:\\Windows\\syswow64*",
 "?:\\Program Files (x86)\\Microsoft*",
 "?:\\Program Files\\Microsoft*") and
not (dll.code_signature.subject_name : "Microsoft *" and
 dll.code_signature.trusted == true)] by dll.path

This is an example detection of UACME 30 sideloading wow64log.dll into an instance of
WerFault.exe running as System (which provides a good direct jump from Medium to

System integrity) shown below.

https://www.elastic.co/guide/en/elasticsearch/reference/current/eql-syntax.html
https://github.com/hfiref0x/UACME/tree/v3.2.x
http://waleedassar.blogspot.com/2013/01/wow64logdll.html

8/19

If UAC is set to Always Notify,then finding a missing DLL or winning a file write race
condition into a path writable by a Medium integrity process is a valid option. This is an
example of UAC bypass hijacking the SilentCleanup scheduled task (via a file write race
condition) which spawns a high integrity descendant process DismHost.exe executing from
an AppData subfolder (writable by Medium integrity) and this is another variation that abuses
the same task but for a missing dependency. api-ms-win-core-kernel32-legacy-l1.dll.

Another DLL Hijack primitive that can achieve the same goal is to use DLL loading
redirection via creating a folder within the same directory of the targeted elevated program
(e.g. target_program.exe.local and dropping a DLL there that will be loaded instead of
the expected one).

This technique can be also used as a primitive for local privilege escalation in the case of a
vulnerability that allows the creation of a folder (with a permissive Access Control List) to a
controlled location such as described by Jonas Lykkegård in this blog From directory deletion
to SYSTEM shell.

EQL search - Potential Privilege Escalation via DLL Redirection

https://enigma0x3.net/2016/07/22/bypassing-uac-on-windows-10-using-disk-cleanup/
https://github.com/EncodeGroup/UAC-SilentClean
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-redirection
https://twitter.com/jonasLyk
https://secret.club/2020/04/23/directory-deletion-shell.html

9/19

library where user.id : "S-1-5-18" and
 dll.path : ("?:\\Windows\\system32*.exe.local*",
 "?:\\Windows\\syswow64*.exe.local*",
 "?:\\Program Files (x86)\\Microsoft*.exe.local*",
 "?:\\Program Files\\Microsoft*.exe.local*") and
not (dll.code_signature.subject_name : "Microsoft *" and
 dll.code_signature.trusted == true) and
process.executable :
 ("?:\\Windows\\system32*",
 "?:\\Windows\\syswow64*",
 "?:\\Program Files (x86)\\Microsoft*",
 "?:\\Program Files\\Microsoft*")

This query matches on UACME method 22, which targets consent.exe (executing as
System), tricking it into loading comctl32.dll from the SxS DotLocal directory instead
of System32 :

Note

It’s worth also mentioning that the majority of UAC bypasses via DLL hijack are also useful
for persistence and may bypass detection based on autoruns (known file and registry
persistence locations)

Elevated COM Interface¶

This method is a bit different from the previous ones, meaning no direct operation redirection
is involved. Instead, it relies on finding an elevated COM interface that exposes some form of
execution capabilities (i.e. CreateProcess / ShellExec wrapper) that can be invoked to launch
a privileged program passed via arguments from a medium integrity process.

From a behavior perspective, usually, those COM interfaces will be executed under the
context of dllhost.exe (COM Surrogate) with process.command_line containing the
classId of the targeted COM object, this will usually result in the creation of a high

integrity child process.

https://github.com/hfiref0x/UACME/tree/v3.2.x
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512#file-akagi_41-c-L130

10/19

Below are examples of different malware families adopting this method for UAC bypass
(such as DarkSide and LockBit ransomware families) to elevate integrity level before
launching the encryption and evasion capabilities, which is good prevention choke point:

Token Security Attributes¶

An insightful observation was made by James Forshaw for the possibility of leveraging
process token security attributes to identify processes launched as descendants of an auto-
elevated application.

ProcessHacker also captures this type of information. Below is an example of Token
Properties for a notepad.exe instance launched via the fodhelper UAC bypass.

https://malpedia.caad.fkie.fraunhofer.de/details/win.darkside
https://malpedia.caad.fkie.fraunhofer.de/details/win.lockbit
https://twitter.com/tiraniddo/status/1192583900645732352?lang=fr
https://twitter.com/tiraniddo
https://github.com/processhacker/processhacker/blob/76d00575597c9c6baabcf2cbb81e7e099ac31f8f/phnt/include/ntseapi.h#L194-L204
https://github.com/processhacker/processhacker/blob/ac8578d86bbca9924e9cec2c09ec495d44a6f3fd/ProcessHacker/tokprp.c#L3118-L3171

11/19

The LUA://HdAutoAp attribute means it’s an auto-elevated application (populated also for
elevated COM objects and AppInfo hardcoded whitelisted processes). LUA://DecHdAutoAp
means it’s a descendant of an auto elevated application, which is very useful when tracking
the process tree generated via a UAC bypass.

Elastic Endpoint security 7.16 and above capture this information with process execution
events (process.Ext.token.security_attributes) which open up the opportunity to hunt and
detect UAC bypasses hijacking the execution flow of an auto-elevated program or COM
Interface with no prior knowledge of the bypass specifics (targeted binary, COM Interface,
redirection method, and other important details) :

Suspicious Auto Elevated Program Child Process:

EQL search - Detecting UAC bypass via Token Security Attributes

https://www.elastic.co/blog/whats-new-elastic-security-7-16-0

12/19

process where event.action == "start" and
 process.Ext.token.integrity_level_name : ("high", "system") and
 process.parent.command_line != null and
 /* descendant of an auto-elevated application or COM object */
 process.Ext.token.security_attributes : "LUA://DecHdAutoAp" and
 (
 /* common lolbins, evasion and proxy execution programs */
 process.pe.original_file_name :
 ("rundll32.exe",
 "cmd.exe",
 "pwsh*",
 "powershell.exe",
 "mshta.exe",
 "msbuild.exe",
 "regsvr32.exe",
 "powershell.exe",
 "cscript.exe",
 "wscript.exe",
 "wmic.exe",
 "installutil.exe",
 "msxsl.exe",
 "Microsoft.Workflow.Compiler.exe",
 "ieexec.exe",
 "iexpress.exe",
 "RegAsm.exe",
 "installutil.exe",
 "RegSvcs.exe",
 "RegAsm.exe",
 "javaw.exe",
 "reg.exe",
 "schtasks.exe",
 "sc.exe",
 "net.exe",
 "net1.exe",
 "vssadmin.exe",
 "bcdedit.exe",
 "wbadmin.exe",
 "msiexec.exe") or

 /* suspicious or unusual paths */
 process.executable : ("?:\\Windows\\Microsoft.NET*",
 "?:\\Users\\Public*",
 "?:\\Programdata*",
 "?:\\Windows\\Temp*",
 "?:\\Windows\\Tasks*",
 "?:\\Windows\\System32\\Tasks*") or

 /* MS signed but from unusual paths */
 (process.code_signature.trusted == true and
 process.code_signature.subject_name : "Microsoft *" and
 not process.executable : ("?:\\Windows\\system32*.exe",
 "?:\\Windows\\SysWOW64*.exe",
 "?:\\Program Files*.exe",
 "?:\\Program Files (x86)*",
 "?:\\ProgramData\\Microsoft*",

13/19

 "\\Device\\HarddiskVolume*\\Windows\\System32*.exe",
 "\\Device\\HarddiskVolume*\\Windows\\SysWOW64*.exe") and

 /* runs from temp folder and invoked by different elevated processes */
 not process.pe.original_file_name == "DismHost.exe"
) or

 /* elevated and unsigned or untrusted programs excluding
 third party uninstallers executed via appwiz.cpl */
 ((process.code_signature.trusted == false or
 process.code_signature.exists == false) and
 not (process.parent.name : "dllhost.exe" and
 process.parent.command_line :
 "*FCC74B77-EC3E-4DD8-A80B-008A702075A9*"))) and

 /* Rundll32 FPs */
 not (process.name : "rundll32.exe" and
 process.args :
 ("devmgr.dll,DeviceProperties_RunDLL",
 "?:\\Windows\\system32\\iesetup.dll,IEShowHardeningDialog") and
 process.parent.name : ("dllhost.exe", "ServerManager.exe")) and

 /* uninstallers executed via appwiz.cpl */
 not (process.args : "/uninstall" and
 process.parent.name : "dllhost.exe" and
 process.parent.command_line : "*FCC74B77-EC3E-4DD8-A80B-008A702075A9*")
 and

 /* server manager may spawn interactive powershell commands */
 not (process.name : "powershell.exe" and
 process.parent.executable : "?:\\Windows\\System32\\ServerManager.exe")
 and

/* Windows Installer service descendants */
not (process.parent.executable : "?:\\Windows\\System32\\msiexec.exe" and
 process.parent.args : "/V")

The above query also matches on all the descendants of a UAC bypass and not only the
direct child process.

Here we can see this approach detecting the fodhelper execution flow hijacking via
registry key manipulation:

14/19

Here is an example of this matching UAC Bypass by Mocking Trusted Directories.

Below are examples of matches for 3 different UAC bypasses via Elevated COM Interface:

https://medium.com/tenable-techblog/uac-bypass-by-mocking-trusted-directories-24a96675f6e

15/19

Detection Evasion¶

A good number of evasion techniques that are not limited to UAC bypass were discussed in
this blog post by hFireF0X such as renaming a folder or registry key, registry symbolic links
to break detection logic based on specific file path/registry key changes or correlation of
different events by the same process. Although the majority of malware families don’t bother
to modify and tune those techniques, accounting for those evasion opportunities is a must for
more resilience.

Below is an example of file monitoring evasion via directory rename (UACME 22).

Here is an example of registry key path monitoring evasion via key rename (byeintegrity8).

Another interesting evasion trick that was added recently to UACME v.3.5.7 is the CurVer
subkey, which can be used to redirect the shell Default handler. This effectively bypasses
detections looking for hardcoded suspicious registry path/values:

https://swapcontext.blogspot.com/2020/10/uacme-35-wd-and-ways-of-mitigation.html
https://twitter.com/hFireF0X
https://github.com/hfiref0x/UACME/tree/v3.2.x
https://github.com/AzAgarampur/byeintegrity8-uac
https://github.com/hfiref0x/UACME/commit/75b39e214ef6c2e37f04463f89aa0433afb2b08a#diff-b88fec8a22ebca61cc2ebfb4b0e1549b50fd179f262228e018ab2463cb4efc56R567
https://docs.microsoft.com/en-us/windows/win32/shell/fa-progids

16/19

For file-based detection related to DLL hijacking, it is better to use DLL load events (Elastic
Endpoint Security 7.16 logs non-Microsoft signed DLLs). For registry ones, a mix of
registry.data.strings, and value names should be a bit more resilient than the full key path.

The example EQL correlation below shows how to detect DLL loading from a directory
masquerading as System32 (i.e as a result of windir/systemroot environment variable
modification) :

EQL search - Detect redirection via rogue Windir/SystemRoot

sequence by process.entity_id with maxspan=1m
 [process where event.action == "start" and
 /* any process running as high or system integrity */
 process.Ext.token.integrity_level_name : ("high", "system")]
 [library where dll.path :
 /* masquerading as windir/system root */
 ("?:*\\System32*.dll", "?:*\\SysWOW64*.dll") and
 not dll.path :
 ("?:\\Windows\\System32*.dll","?:\\Windows\\Syswow64*.dll") and
 not (dll.code_signature.subject_name : "Microsoft *" and
 dll.code_signature.trusted == true)]

This example shows matches for 2 different techniques (registry key manipulation and DLL
hijack via fake Windir):

https://www.elastic.co/blog/whats-new-elastic-security-7-16-0
https://www.elastic.co/guide/en/elasticsearch/reference/current/eql-syntax.html

17/19

The next example combines a registry symbolic link and registry key rename to evade
fodhelper UAC bypass detection based on registry key changes monitoring (ms-settings

or shell\open\command) :

UACME v.3.5 and above implements this evasion for methods involving registry key
manipulation.

You can hunt using Elastic Endpoint or Sysmon logs registry symbolic link creation by
looking for registry modification with value name equal to SymbolicLinkValue.

An example KQL query to detect this evasion is: registry.value :"SymbolicLinkValue"
and registry.key : S-1-5-21-15Classes*`:

https://scorpiosoftware.net/2020/07/17/creating-registry-links/
https://github.com/hfiref0x/UACME
https://github.com/hfiref0x/UACME/commit/e9495cfd2ff074ca8d4a3722428212e09c981817#diff-b88fec8a22ebca61cc2ebfb4b0e1549b50fd179f262228e018ab2463cb4efc56R163
https://blog.menasec.net/2020/09/discovering-windows-registry-symbolic.html

18/19

Most Common UAC Bypasses¶

Malware families in use in the wild constantly shift and change. Below you can see a quick
overview of the top commonly observed UAC bypass methods used by malware families:

Method Malware Family

UAC Bypass via ICMLuaUtil Elevated COM Interface DarkSide, LockBit, TrickBot

UAC Bypass via ComputerDefaults Execution Hijack ClipBanker, Quasar RAT

UAC Bypass via Control Panel Execution Hijack AveMaria, Trojan.Mardom

UAC Bypass via DiskCleanup Scheduled Task Hijack RedLine Stealer, Glupteba

UAC Bypass via FodHelper Execution Hijack Glupteba, BitAT dropper

UAC Bypass Attempt via Windows Directory Masquerading Remcos RAT

Most common executed commands via a UAC bypass are either the malware re-execute
itself as high integrity or defense evasions techniques such as:

Tamper with AV exclusions or state
Writing to HKLM protected registry keys
Tamper with system recovery settings

https://malpedia.caad.fkie.fraunhofer.de/details/win.darkside
https://malpedia.caad.fkie.fraunhofer.de/details/win.lockbit
https://malpedia.caad.fkie.fraunhofer.de/details/win.trickbot
https://malpedia.caad.fkie.fraunhofer.de/details/win.clipbanker
https://malpedia.caad.fkie.fraunhofer.de/details/win.quasar_rat
https://www.virustotal.com/gui/file/e07327f2a5d54106bd1e7e877281080c57b320daaf69594794ce59ff69ae3761
https://www.virustotal.com/gui/file/f8dca5a2d7ec9ab3916266db1187428352889126cc30a4f8527c828dea706532/detection
https://malpedia.caad.fkie.fraunhofer.de/details/win.redline_stealer
https://malpedia.caad.fkie.fraunhofer.de/details/win.glupteba
https://malpedia.caad.fkie.fraunhofer.de/details/win.glupteba
https://malpedia.caad.fkie.fraunhofer.de/details/win.bit_rat
https://malpedia.caad.fkie.fraunhofer.de/details/win.remcos

19/19

Conclusion¶

Designing detections by focusing on key building blocks of an offensive technique is much
more cost-effective than trying to cover the endless variety of implementations and potential
evasion tunings. In this post, we covered the main methods used for UAC bypass and how to
detect them as well as how enriching process execution events with token security attributes
enabled us to create a broader detection logic that may match unknown bypasses.

In addition to the broader detections highlighted in this blog post, Elastic Endpoint Security
comes with 26 prebuilt endpoint behavior protections for UAC bypasses.

References¶

https://github.com/hfiref0x/UACME (and its sub references)
https://swapcontext.blogspot.com/2020/10/uacme-35-wd-and-ways-of-mitigation.html
https://tyranidslair.blogspot.no/2017/05/reading-your-way-around-uac-part-1.html
https://tyranidslair.blogspot.no/2017/05/reading-your-way-around-uac-part-2.html
https://tyranidslair.blogspot.no/2017/05/reading-your-way-around-uac-part-3.html
https://www.tiraniddo.dev/2017/05/exploiting-environment-variables-in.html
https://medium.com/tenable-techblog/uac-bypass-by-mocking-trusted-directories-
24a96675f6e
https://github.com/AzAgarampur/byeintegrity5-uac
https://github.com/AzAgarampur/byeintegrity8-uac
https://enigma0x3.net/2016/07/22/bypassing-uac-on-windows-10-using-disk-cleanup/
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-
control/how-user-account-control-works
https://googleprojectzero.blogspot.com/2019/12/calling-local-windows-rpc-servers-
from.html

Last update: February 23, 2022
Created: February 8, 2022

https://www.elastic.co/endpoint-security/
https://github.com/hfiref0x/UACME
https://swapcontext.blogspot.com/2020/10/uacme-35-wd-and-ways-of-mitigation.html
https://tyranidslair.blogspot.no/2017/05/reading-your-way-around-uac-part-1.html
https://tyranidslair.blogspot.no/2017/05/reading-your-way-around-uac-part-2.html
https://tyranidslair.blogspot.no/2017/05/reading-your-way-around-uac-part-3.html
https://www.tiraniddo.dev/2017/05/exploiting-environment-variables-in.html
https://medium.com/tenable-techblog/uac-bypass-by-mocking-trusted-directories-24a96675f6e
https://github.com/AzAgarampur/byeintegrity5-uac
https://github.com/AzAgarampur/byeintegrity8-uac
https://enigma0x3.net/2016/07/22/bypassing-uac-on-windows-10-using-disk-cleanup/
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://googleprojectzero.blogspot.com/2019/12/calling-local-windows-rpc-servers-from.html

