
1/7

February 3, 2022

Analysis of Attack Against National Games of China Systems
decoded.avast.io/janneduchal/analysis-of-attack-against-national-games-of-china-systems/

by David Álvarez Pérez and Jan NeduchalFebruary 3, 20229 min read

Introduction

On September 15, 2021 the National Games of China began in the Chinese city of Shaanxi . It is
an event similar if not identical to the Olympics, but only hosts athletes from China. Earlier in
September, our colleague David Álvarez found a malware sample with a suspicious file extension of a
picture and decided to investigate where it came from. Later, he also found a report of the incident from
the National Games IT team on VirusTotal stating that the attack occurred before the Games
started. Attached to the report were access logs from the web-server and SQL database. By analyzing
these logs, we gathered initial information about the attack. These logs only include request path, and
sadly do not reveal content of POST requests much needed to fully understand what commands
attackers sent to their web shells, but even with this limited information we were able to outline the
attack and determine the initial point of intrusion with moderate confidence.

In this posting, we are sharing our own research on the incident, the samples and the exploits used by
the attackers, detailing what appears to be a successful breach of systems hosting content for the
National Games prior to the event. We based our research on publicly accessible information about

the incident. The analyzed samples were already present on VirusTotal .

Based on the initial information from the report and our own findings, it appears the breach was
successfully resolved prior to the start of the games. We are unable to detail what actions the attackers
may have taken against the broader network. We also are unable to make any conclusive attribution of
the attackers, though have reason to believe they are either native Chinese-language speakers or
show high fluency in Chinese.

Gaining access

The evidence indicates that the attackers gained initial code execution at around 10:00AM local time
on September 3, 2021 and installed their first reverse shell executing scripts
called runscript.lua . We suspect that the way this happened is via an arbitrary file-read exploit
targeting either route.lua which, according to the API (Application User Interface) extracted
from various JavaScript files, is a LUA script containing a lot of functionality from handling login

https://decoded.avast.io/janneduchal/analysis-of-attack-against-national-games-of-china-systems/
https://decoded.avast.io/janneduchal/analysis-of-attack-against-national-games-of-china-systems/
https://en.wikipedia.org/wiki/National_Games_of_China(opens%20in%20a%20new%20tab)
http://10.10.0.46/mailto:david.alvarez@avast.com

2/7

authentication to manipulation of files or index.lua in combination with index.lua?a=upload API
that was not used by anyone else in the rest of the network log. It’s also worth noting that
runscript.lua was not mentioned in the report or included in the attacker uploaded files.

After gaining initial access the attackers uploaded several other reverse shells such as conf.lua ,
miss1.php or admin2.php (see table 2 for source code) to gain a more permanent foothold in the

network in case one of the shells got discovered. These reverse shells get commands via a POST
request, thus the data is not present in the logs attached with the report as they only contain the URL
path .

In the screenshot we can see that the attackers were getting a lot of data returned to them from the
backdoors (highlighted)

Even more so the logs in the report don’t contain full information about the network traffic such that we
could with certainty determine how and when the attackers gained their first web shell. We estimated
our findings by looking for a point in time from which they uploaded and interacted with the first custom
web shell we can find.

What they did there

The attackers started doing some tests on what they were able to upload to the server. From August
26, 2021 to September 9, 2021 the attackers tried submitting files with different file-types and also
file extensions. For instance, they submitted the same legitimate image (
7775b6a45da80c1a8a0f8e044c34be823693537a0635327b967cc8bff3cb349a) with different file

extensions: ico , lua , js , luac , txt , html and rar .

After gaining knowledge on blocked and allowed file types, they tried to submit executable code. Of
course, they started submitting PoCs instead of directly executing a webshell because submitting
PoCs is more stealthy and also allows one to gain knowledge on what the malicious code is allowed to

do. For instance, one of the files uploaded was this Lua script camouflaged as an image (20210903-
160250-168571-ab1c20.jpg):

os.execute("touch","/tmp/test.miss")

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/olympic01.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/olympic02.png

3/7

Taking advantage of the Lua io.popen function, which executes a command and returns process
output, the attackers used variants of the following command camouflaged as images to test different
webshells:

io.popen("echo 'Base64EncodedWebshell' |base64 -d > ../mod/remote/miss.php")

They tested different Chinese webshells (i.e. Godzilla webshell), but this information is not enough to
confidently attribute the attack to any threat actor.

The attackers decided to reconfigure the web server by uploading their own www.conf file
camouflaged as a PNG file consisting of a default configuration but allowing the .lua extension to be
executed. We suspect that the server was configured to execute new threads in a thread pool which
didn’t work for Rebeyond Behinder (a powerful Chinese webshell) they wanted to execute. They were
not able to successfully reconfigure the server to execute it. So, as final payload, they uploaded and ran
an entire Tomcat server properly configured and weaponized with Rebeyond Behinder.

It is important to mention that they were able to upload some tools (dnscrypt-proxy, fscan, mssql-
command-tool, behinder) to the server and execute a network scanner (fscan) and a custom one-
click exploitation framework that we want to discuss below in more detail.

The aforementioned Chinese scanner and exploitation framework is written in Go programming
language and distributed as a single binary, which allows to execute all the steps of exploitation by
simply feeding it with an IP or a range of IPs (those can be passed as arguments to the program or
using a text file) which makes of it an excellent tool to quickly hack computer systems belonging a
network environment.

The tool is well organized. It is structured with plugins that allow it to perform all the necessary steps to
autonomously hack other devices within the same network.

1. Plugins/Web/Finger: Performs a fingerprint to recognize services. Currently, it supports the
following fingerprints: IBM, Jboss, shiro, BIG-IP, RuiJie, Tomcat, Weaver, jeecms, seeyon, shterm,
tongda, zentao, Ueditor, ioffice, outlook, yongyou, Coremail, easysite, FCKeditor, Fortigate,
FineReport, SangforEDR, Springboot, thinkphp_1, thinkphp_2, thinkphp_3, thinkphp_4,
easyConnect and weblogic_async.

2. Plugins/Service: Attacks services in order to get access to it. Currently, it supports the following
services: ssh, smb, redis, mysql, mssql, ms17010 (EternalBlue SMB exploit) and ftp.

3. Plugins/PwdTxt: Lists of both, username and password, short dictionaries for each service in
Plugins/Service allowing to perform a brief brute force attack on the service.

4. Plugins/Web/Poc: Modules to exploit common web applications. Currently, it supports the
following exploits: Jeecms_SSRF1, yongyou_rce1, RuiJie_RCE1, outlook_ews, thinkphp_RCE1,
thinkphp_RCE2, thinkphp_RCE3, thinkphp_RCE4, thinkphp_RCE5, thinkphp_RCE6,
RuiJie_Upload1, Weaver_Upload1, yongyou_upload1, weblogic_console, phpstudy_backdoor,
yongyou_readFile1, Jboss_unAuthConsole, Jboss_CVE_2017_12149,
weblogic_CVE_2019_2618.

An example of a Plugin is plugins/Web/Poc/Weblogic_CVE_2019_2618 .

In the left side of the following screenshot you can see a scan executed in our lab, targeting a Python
server (terminal in the right side of the screenshot) with the exploit payload request highlighted in a red
rectangle.

https://www.geekby.site/2021/03/webshell%E6%B5%81%E9%87%8F%E5%88%86%E6%9E%90/
https://github.com/rebeyond/Behinder/releases
https://github.com/rebeyond/Behinder/releases
https://github.com/DNSCrypt/dnscrypt-proxy
https://github.com/shadow1ng/fscan/releases
https://github.com/jas502n/mssql-command-tool
https://github.com/rebeyond/Behinder/releases

4/7

For more information on the payloads, please, refer to IoCs, Table 2.

Conclusion

The procedure followed by the attackers hacking the 14th National Games of China is not new at
all. They gained access to the system by exploiting a vulnerability in the web server. This shows the
need for updating software, configuring it properly and also being aware of possible new vulnerabilities
in applications by using vulnerability scanners.

The most fundamental security countermeasure for defenders consists in keeping the infrastructure up-
to-date in terms of patching. Especially for the Internet facing infrastructure.

Prevention should be the first priority for both internal and Internet facing infrastructure.

Webshells are a post exploitation tool that can be very difficult to detect. Some webshells don’t even
touch the filesystem residing only in memory; this can make it even harder to detect and identify. After
implanting, webshells are mostly identified via unusual network traffic or anomalous network traffic
indicators.

To protect against this kind of attack, it is important to deploy more layers of protection (i.e. SELinux ,
Endpoint Detection and Response solutions and so on) such that you can detect and quickly act

when a successful intrusion happens.

After gaining access, the attackers tried to move through the network using exploits and bruteforcing
services in an automated way. Since getting to this point is very possible for attackers, defenders must
be prepared. Real Time monitoring of computer systems and networks is the right way to do that.

Finally, the attackers used an exploitation framework written in the Go programming language to move
through the network. Go is a programming language becoming more and more popular which can be
compiled for multiple operating systems and architectures, in a single binary self-containing all
dependencies. So we expect to see malware and grey tools written in this language in future attacks,
especially in IoT attacks where a broad variety of devices leveraging different kinds of processor
architectures are involved.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/02/olympic03.png

5/7

IoCs

SHA + original filename Description

0c6ae9de10bee6568ec3ad24918c829b7e5132cc0dd1665d4bbf1c3fe84451b6
20210902-104211-659035-88486d.zip

Encrypted ZIP file

0d1504a9ae319bdc320f938d2cdf72cba18277b3f2b311abf0bacad2517dabc0
20210903-163606-280628-0a82f3.txt

Shellcode dropper

cac30cc2f4646979d0be8b4d5f3a1f87351b3bb77f22e5064bd034cec9e119bb
20210903-170452-952751-b9106e.txt

Single line
shellcode

0aeb963b4566dc2224d34b4885336c666198db2ac64c810586ce3b17ef3da59f
20210903-171141-909389-0f6e83.txt

Rebeyond
shellcode dropper

dffa7e31797339f3ce7ec453161b60010eda3dd2e52aa9f147ab4389672c3536
20210903-194355-378055-c6cb9c.txt

Shellcode dropper

bdd4d0bb36d07ae6b97ffbcd386c54e1b15fefe65329ff0389dfd5739cd3cff2
20210904-122732-780555-5c07b2.rar

UPX compressed
Mssql Toolkit

3a8dc7e730a1f82f65f1731cb31e05e2f749a9e89ab8529168a082d24680d2dd
20210904-153039-541730-a843fe.zip

FScan for Linux

ec8aef085d3cc57a4e92a613e128f2d9c7b5f03b8e017dd80d89bfeada228639
20210904-160830-117786-b5cab7.rar
20210904-161031-883832-c50992.rar

Custom
exploitation
framework

2cab3b0391bf3ace689fc697f522b3c86411e059ab8c1f4f5b7357b484b93035
20210904-164301-268472-915428.zip

Rebeyond
Behinder webshell

d033756a57d8a2758de40895849e2146d571b3b44f3089eb68c31483784586cd
20210904-112719-261644-c9c5eb.jpg

UPX Compressed
DNS Proxy for
Linux

Table 1

Proof of concept Payload

Yongyou_upload1 Request GET /aim/equipmap/accept.jsp

ThinkPHP_RCE4 Request POST /index.php?s=/Index/\\think\\app/invokefunction

Data function=call_user_func_array&vars[0]=base64_encode&vars[1]
[]=123456

ThinkPHP_RCE5 Request POST /index.php?s=/Index/\\think\\app/invokefunction

Data function=call_user_func_array&vars[0]=base64_encode&vars[1]
[]=123456

ThinkPHP_RCE6 Request POST /public/?s=captcha/MTIzNDU2

Data _method=__construct&filter[]=print_r&method=GET&s=1

yongyou_rce1 Request GET /service/monitorservlet

https://github.com/shadow1ng/fscan/releases
https://github.com/rebeyond/Behinder/releases
https://github.com/DNSCrypt/dnscrypt-proxy

6/7

RuiJie_Upload1 Request GET /ddi/server/fileupload.php

Weaver_Upload1 Request GET /page/exportImport/uploadOperation.jsp

phpstudy backdoor Request GET /

Headers User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/55.0.2883.75 Safari/537.36
Accept-Encoding: gzip,deflate

ThinkPHP_RCE2 Request GET /index.php?s=index/think\\request/input?
data=123456&filter=base64_encode

yongyou_readFile1 Request GET /NCFindWeb?service=&filename=

weblogic_CVE_2019_2618 Request GET /bea_wls_deployment_internal/DeploymentService

Outlook ews (Interface
blasting)

Request GET /ews

ThinkPHP_RCE1 Request GET /index.php?s=index/\\think\\app/invokefunction&function=
call_user_func_array&vars[0]=base64_encode&vars[1]
[]=123456

ThinkPHP_RCE3 Request GET /index.php?
s=index/\\think\\Container/invokefunction&function=
call_user_func_array&vars[0]=base64_encode&vars[1]
[]=123456

CVE_2020_14882 Request GET /console/

Jboss JMXInvokerServlet
(Deserialization)

Request GET /index.php?
s=index/\\think\\Container/invokefunction&function=
call_user_func_array&vars[0]=base64_encode&vars[1]
[]=123456

Jboss (Unauthorized
access to the console)

Request GET /jmx-console/index.jsp

Jboss JMXInvokerServlet
(Deserialization)

Request GET /index.php?
s=index/\\think\\Container/invokefunction&function=
call_user_func_array&vars[0]=base64_encode&vars[1]
[]=123456

jeecms SSRF to Upload Request GET /ueditor/getRemoteImage.jspx?
upfile=http://127.0.0.1:80/1.png

RuiJie_RCE1 Request GET /guest_auth/guestIsUp.php

Table 2

Files

miss1.php

conf.lua

admin2.php

https://www.cnblogs.com/cn-gov/p/13903278.html

7/7

IoC repository

Files and IoCs are in our IoC repository

Tagged asanalysis, backdoor, malware, reversing

https://github.com/avast/ioc/tree/master/NationalGamesOfChina
https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/backdoor/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/reversing/

