
1/6

Sandboxing Antimalware Products for Fun and Profit
elastic.github.io/security-research/whitepapers/2022/02/02.sandboxing-antimalware-products-for-fun-and-profit/article/

Windows Internals Vulnerability

Gabriel Landau · @gabriellandau 2022-02-02

https://elastic.github.io/security-research/whitepapers/2022/02/02.sandboxing-antimalware-products-for-fun-and-profit/article/
https://elastic.github.io/security-research/tags/#windows-internals
https://elastic.github.io/security-research/tags/#vulnerability
https://github.com/gabriellandau

2/6

This article demonstrates a flaw that allows attackers to bypass a Windows security
mechanism which protects anti-malware products from various forms of attack. This is of
particular interest because we build and maintain two anti-malware products that benefit from
this protection.

Protected Anti-Malware Services¶

Windows 8.1 introduced a concept of Protected Antimalware Services. This enables
specially-signed programs to run such that they are immune from tampering and termination,
even by administrative users. Microsoft’s documentation (archived) describes this as:

In Windows 8.1, a new concept of protected service has been introduced to allow anti-
malware user-mode services to be launched as a protected service. After the service is
launched as protected, Windows uses code integrity to only allow trusted code to load
into the protected service. Windows also protects these processes from code injection
and other attacks from admin processes.

The goal is to prevent malware from instantly disabling your antivirus and then running amok.
For the rest of this article, we call them Protected Process Light (PPL (Protected Process
Light)). For more depth, Alex Ionescu goes into great detail on protected processes in his
talk at NoSuchCon 2014.

To be able to run as a PPL (Protected Process Light), an anti-malware vendor must apply to
Microsoft, prove their identity, sign binding legal documents, implement an Early Launch Anti-
Malware (ELAM (Early Launch Anti-Malware)) driver, run it through a test suite, and submit it
to Microsoft for a special Authenticode signature. It is not a trivial process. Once this process
is complete, the vendor can use this ELAM (Early Launch Anti-Malware) driver to have
Windows protect their anti-malware service by running it as a PPL (Protected Process Light).

You can see PPL (Protected Process Light) in action yourself by running the following from
an elevated administrative command prompt on a default Windows 10 install:

Protected Process Light in Action
As you can see here, even a user running as SYSTEM (or an elevated administrator) with
SeDebugPrivilege cannot terminate the PPL (Protected Process Light) Windows Defender
anti-malware Service (MsMpEng.exe). This is because non-PPL (Protected Process Light)
processes like taskkill.exe cannot obtain handles with the PROCESS_TERMINATE
access right to PPL (Protected Process Light) processes using APIs such as OpenProcess.

In summary, Windows attempts to protect PPL (Protected Process Light) processes from
non-PPL (Protected Process Light) processes, even those with administrative rights. This is
both documented and implemented. That being said, with PROCESS_TERMINATE blocked,
let’s see if there are other ways we can interfere with it instead.

https://docs.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-
https://web.archive.org/web/20211019010629/https://docs.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-
https://twitter.com/aionescu
https://www.youtube.com/watch?v=35L_qJNMu1A
https://docs.microsoft.com/en-us/windows/win32/w8cookbook/secured-boot
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-installelamcertificateinfo
https://devblogs.microsoft.com/oldnewthing/20080314-00/?p=23113
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

3/6

Windows Tokens¶

A Windows token can be thought of as a security credential. It says who you are and what
you’re allowed to do. Typically when a user runs a process, that process runs with their token
and can do anything the user can do. Some of the most important data within a token
include:

User identity
Group membership (e.g. Administrators)
Privileges (e.g. SeDebugPrivilege)
Integrity level

Tokens are a critical part of Windows authorization. Any time a Windows thread accesses a
securable object, the OS performs a security check. It compares the thread’s effective token
against the security descriptor of the object being accessed. You can read more about
tokens in the Microsoft access token documentation and the Elastic blog post that introduces
Windows tokens.

Sandboxing Tokens¶

Some applications, such as web browsers, have been repeated targets of exploitation. Once
an attacker successfully exploits a browser process, the exploit payload can perform any
action that the browser process can perform. This is because it shares the browser’s token.

To mitigate the damage from such attacks, web browsers have moved much of their code
into lower-privilege worker processes. This is typically done by creating a restricted security
context called a sandbox. When a sandboxed worker needs to perform a privileged action on
the system, such as saving a downloaded file, it can ask a non-sandboxed “broker” process
to perform the action on its behalf. If the sandboxed process is exploited, the goal is to limit
the payload’s ability to cause harm to only resources accessible by the sandbox.

While modern sandboxing involves several components of OS security, one of the most
important is a low-privilege, or restricted, token. New sandbox tokens can be created with
APIs such as CreateRestrictedToken. Sometimes a sandboxed process needs to lock
itself down after performing some initialization. The AdjustTokenPrivileges and
AdjustTokenGroups APIs allow this adjustment. These APIs enable privileges and groups to
be “forfeit” from an existing process’s token in such a way that they cannot be restored
without creating a new token outside the sandbox.

One commonly used sandbox today is part of Google Chrome. Even some security products
are getting into sandboxing these days.

Accessing Tokens¶

https://docs.microsoft.com/en-us/windows/win32/secauthz/securable-objects
https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptors
https://docs.microsoft.com/en-us/windows/win32/secauthz/access-tokens
https://www.elastic.co/blog/introduction-to-windows-tokens-for-security-practitioners
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-createrestrictedtoken
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-adjusttokenprivileges
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-adjusttokengroups
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://www.microsoft.com/security/blog/2018/10/26/windows-defender-antivirus-can-now-run-in-a-sandbox/

4/6

Windows provides the OpenProcessToken API to enable interaction with process tokens.
MSDN (Microsoft Developer Network) states that one must have the
PROCESS_QUERY_INFORMATION right to use OpenProcessToken . Since a non-protected

process can only get PROCESS_QUERY_LIMITED_INFORMATION access to a PPL (Protected
Process Light) process (note the LIMITED), it is seemingly impossible to get a handle to a
PPL (Protected Process Light) process’s token. However, MSDN (Microsoft Developer
Network) is incorrect in this case. With only PROCESS_QUERY_LIMITED_INFORMATION , we
can successfully open the token of a protected process. James Forshaw explains this
documentation discrepancy in more depth, showing the underlying de-compiled kernel code.

Tokens are themselves securable objects. As such, regular access checks still apply. The
effective token of the thread attempting to access the token is checked against the security
descriptor of the token being accessed for the requested access rights (TOKEN_QUERY ,
TOKEN_WRITE , TOKEN_IMPERSONATE , etc). For more detail about access checks, see the

Microsoft article, “How Access Checks Work.”

The Attack¶

Process Hacker provides a nice visualization of token security descriptors. Taking a look at
Windows Defender’s (MsMpEng.exe) token, we see the following Discretionary Access
Control List (DACL (Discretionary Access Control List)):

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
https://twitter.com/tiraniddo
https://www.tiraniddo.dev/2017/05/reading-your-way-around-uac-part-2.html
https://docs.microsoft.com/en-us/windows/win32/secauthz/how-dacls-control-access-to-an-object
https://github.com/processhacker/processhacker/releases/tag/v2.39

5/6

Note that the SYSTEM user has full control over the token. This means, unless some other
mechanism is protecting the token, a thread running as SYSTEM can modify the token.
When such modification is possible, it violates the desired “PPL (Protected Process Light) is
protected from administrators” design goal.

Demo¶

Alas, there is no other mechanism protecting the token. Using this technique, an attacker can
forcefully remove all privileges from the MsMpEng.exe token and reduce it from system to
untrusted integrity. Being nerfed to untrusted integrity prevents the victim process from
accessing most securable resources on the system, quietly incapacitating the process
without terminating it.

In this video, the attacker could have further restricted the token, but the privilege and
integrity changes were sufficient to prevent MsMpEng.exe from detecting and blocking a
Mimikatz execution. We felt this illustrated a valid proof of concept.

Defense¶

Newer versions of Windows include an undocumented feature called “trust labels.” Trust
labels are part of the System Access Control List (SACL), an optional component of every
security descriptor. Trust labels allow Windows to restrict specific access rights to certain
types of protected processes. For example, Windows protects the \KnownDlls object
directory from modification by malicious administrators using a trust label. We can see this
with WinObjEx64:

Like \KnownDlls , tokens are securable objects, and thus it is possible to protect them
against modification by malicious administrators. Elastic Security does this, in fact, and is
immune to this attack, by denying TOKEN_WRITE access to processes with a trust label

https://powersploit.readthedocs.io/en/latest/Privesc/Get-System/
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://docs.microsoft.com/en-us/windows/win32/ad/retrieving-an-objectampaposs-sacl
https://www.elastic.co/blog/protecting-windows-protected-processes
https://www.elastic.co/blog/detect-block-unknown-knowndlls-windows-acl-hardening-attacks-cache-poisoning-escalation
https://github.com/hfiref0x/WinObjEx64

6/6

below “Anti-Malware Light.” Because this protection is applied at runtime, however, there is
still a brief window of vulnerability until it can apply the trust label.

Ideally, Windows would apply such a trust label to each PPL (Protected Process Light)
process’s token as it is created. This would eliminate the race condition and fix the
vulnerability in the PPL (Protected Process Light) mechanism. There is precedent. With a
kernel debugger, we can see that Windows is already protecting the System process’ token
on Windows (21H1 shown below) with a trust label:

The SYSTEM_PROCESS_TRUST_LABEL_ACE_TYPE access control entry limits access to
READ_CONTROL , TOKEN_QUERY , and TOKEN_QUERY_SOURCE (0x00020018) unless the

caller is a WinTcb protected process (SID S-1-19-1024-8192). That SID can be
interpreted as follows:

1: Revision 1
19: SECURITY_PROCESS_TRUST_AUTHORITY
1024: SECURITY_PROCESS_PROTECTION_TYPE_FULL_RID
8192: SECURITY_PROCESS_PROTECTION_LEVEL_WINTCB_RID

Mitigation¶

Alongside this article, we are releasing an update to the PPLGuard proof-of-concept that
protects all running anti-malware PPL (Protected Process Light) processes against this
attack. It includes example code that anti-malware products can employ to protect
themselves. Here it is in action, protecting Defender:

Disclosure¶

We disclosed this vulnerability and proposed fixes to the Microsoft Security Response Center
(MSRC (Microsoft Security Response Center)) on 2022-01-05. They responded on 2022-01-
24 that they have classified it as moderate severity, and will not address it with a security
update. However, they may address it in a future version of Windows.

Conclusion¶

In this article, we disclosed a flaw in the Windows Protected Process Light (PPL (Protected
Process Light)) mechanism. We then demonstrated how malware can use this flaw to
neutralize PPL (Protected Process Light) anti-malware products. Finally, we showed a simple
ACL fix (with sample code) that anti-malware products can employ to defend against this
attack. Elastic Security already incorporates this fix, but we hope that Windows implements it
(or something equivalent) by default in the near future.

Last update: February 8, 2022
Created: February 2, 2022

https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L1794
https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L2097
https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L2100
https://github.com/gabriellandau/ctypes-windows-sdk/blob/0a5bfaa9385391038a7d31928b14d6fe5b76fa97/cwinsdk/um/winnt.py#L2104
https://github.com/elastic/PPLGuard
https://www.microsoft.com/en-us/msrc?rtc=1

