
1/8

Malware Analysis Spotlight: Emotet’s Use of Cryptography
vmray.com/cyber-security-blog/malware-analysis-spotlight-emotets-use-of-cryptography/

Emotet’s Use of Cryptography

Presented by the VMRay Labs Team

The group behind Emotet is the prime example of a very successful criminal enterprise. Emotet started out as
a banking malware but over time evolved into a large botnet providing something akin to a malicious IaaS
(Infrastructure-as-a-Service). It started providing access to its extensive list of infected devices to other threat
actors and their malware (Trickbot, Dridex, IcedID). It started acting as their loader. Since the beginning of 2021,
after a longer “break” which was the consequence of a coordinated take down of Emotet’s infrastructure by the
law enforcement, Emotet resurfaced on the 14th of November 2021. Actively trying to rebuild its own
infrastructure utilizing Trickbot. Many of the techniques stayed the same, but there are also some important
differences.

The Emotet binaries, which were distributed starting from November 2021, come with two embedded elliptic-
curve-based public keys of the server. The previous versions were using RSA as the primary asymmetric
scheme. An RSA public key was embedded in the sample and used to encrypt the generated AES-128 key
before sending it back to its C2. For message integrity, the packet was hashed with the SHA1 algorithm and the
hash was appended to the request message. The new version comes with two public keys. One key is used for
the Elliptic Curve Diffie–Hellman (ECDH) key exchange protocol while the other is used as part of the
signature verification by the Digital Signature Algorithm (DSA). In this blog post, we’ll be looking at how
Emotet uses elliptic curve cryptography to protect the network communication and verify the authenticity and
integrity of the commands received from its C2.

https://www.vmray.com/cyber-security-blog/malware-analysis-spotlight-emotets-use-of-cryptography/
https://unit42.paloaltonetworks.com/unit42-malware-team-malspam-pushing-emotet-trickbot/
https://nakedsecurity.sophos.com/2017/08/10/watch-out-for-emotet-the-trojan-thats-nearly-a-worm/
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://www.europol.europa.eu/media-press/newsroom/news/world%e2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://cyber.wtf/2021/11/15/guess-whos-back/
https://blog.malwarebytes.com/threat-intelligence/2021/11/trickbot-helps-emotet-come-back-from-the-dead/
https://www.cert.pl/en/posts/2020/02/whats-up-emotet/#extracting-static-configuration
https://www.virusbulletin.com/virusbulletin/2019/10/vb2019-paper-exploring-emotet-elaborate-everyday-enigma/

2/8

View the Analysis

Background

Comparison: Past vs Present
 Since the cryptographic part has changed in the newest version of Emotet we are providing a high level

overview of the key steps taken by the older and new versions.

The previous version of Emotet that were using RSA roughly followed the following steps when encrypting a
message:

1. It generates a 128-bit AES key.
2. Encrypts it with the server’s public key.
3. Constructs the message sent to the server.
4. Encrypts the message and hashes the message.C = SHA1(M) || AES128(M), where C is the resulting

ciphertext and M is the plaintext message
5. This results in the following request packet.R = RSA(AESkey) || C

For the newest version the flow and the packets it generates are different as seen below:

1. It first generates its own ECDH public/private key pair.
2. Then it generate an AES key based on a secret agreement.
3. Constructs the message and hashes it.
4. Encrypts the resulting payload: C = AES256(SHA256(M) || M)
5. Request packet is then given by: R = ECDHmal_pub_key || C || <random bytes>

Elliptic Curve Diffie-Hellman (ECDH) Key Exchange

For the ECDH to work, the two communicating parties need to each have a key pair, a private and a public key.
The public keys are points on an elliptic curve and are generated based on the private keys. The public keys are
exchanged, i.e., known by both parties. For example, if s is a private key and P is a primitive element on the
curve, then the public key S is calculated as sP=S, which is simply adding P to itself a times. The addition is a
group operation. If both parties generate their public keys that way based on known domain parameters, they
can calculate the same secret T(SM) (1).

https://www.vmray.com/analyses/ecc-emotet/report/overview.html
https://link.springer.com/book/10.1007/978-3-642-04101-3

3/8

(Figure 1: An example of a DH key exchange algorithm)

The malware already has the ECDH public key of the server. Its own key pair is generated during the execution.
Analogues to the example above, it can now generate a secret from the public key of the server and its own
private key. Now it only needs to sends its public key to the server for the server to also be able to derive the
same secret.

Implementation

Usage of ECDH
The Emotet’s cryptographic components are now utilizing Microsoft’s Cryptography API: Next
Generation (CNG), most notably the BCrypt cryptographic primitive functions. Initially, the malware decrypts the
two embedded public keys of the server (ECDH and ECDSA). It uses the same decryption method as with other
strings. The keys are saved inside a BLOB structure which consists of a BCRYPT_ECCKEY_BLOB header
immediately followed by the key data (Figure 2).

(Figure 2: Structure that windows uses for the ECC public keys)

The ECDH public key of the server is passed to a function responsible for generating the symmetric key (256-bit
AES key). On a higher-level it can be described by the following steps:

https://docs.microsoft.com/en-us/windows/win32/seccng/about-cng
https://docs.microsoft.com/en-us/windows/win32/seccng/cryptographic-primitives
https://docs.microsoft.com/de-de/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_ecckey_blob

4/8

1. Generate a new ECDH key pair for the malware.
2. Generate a secret agreement based on the malware’s private key and the server’s public key.
3. Derive an AES key from the secret agreement using SHA256 as the key derivation function (KDF).

In more detail, this function’s first step is to generate an ECDH key pair that is unique to the malware sample. It
does so by calling BCryptOpenAlgorithmProvider to initialize a CNG provider with the AlgId ECDH_P256 which
corresponds to the prime256v1 or P-256 elliptic curve. Next, it generates a new key pair using the combination
of BCryptGenerateKeyPair and BCryptFinalizeKeyPair. The keys are then exported into a BLOB using
BCryptExportKey for later use (Figure 3).

(Figure 3: VMRay function log – series of function calls responsible for creating a new EC key pair)

Having finalized its key pair, it now imports the servers public key to be able to use it in the generation of a
shared secret. It’s using BCryptImportKeyPair that gets the public key as one of the arguments and returns a
handle to it. This handle can then be passed to BCryptSecretAgreement together with a handle to it’s own key
which it got in the previous step from calling BCryptExportKey (Figure 4). At this stage the secret agreement is
equal to the T(SM) value from Figure 1 and Emotet can start deriving a symmetric key.

(Figure 4: VMRay function log – series of function calls responsible for creating the secret agreement)

The secret generated from the public key of the server and the private key of the malware sample is then used
to generate an AES key. A new CNG provider is initialized with the AlgId = AES. The key is then derived using
BCryptDeriveKey. This function takes the secret agreement as input and generates a key based on a key
derivation function (KDF) and its parameters which are passed in the BCryptBufferDesc structure. For that
Emotet uses HASH as the KDF and passes the SHA256 as the actual algorithm. This key is then imported
using BCryptImportKey (for symmetric keys) so that it can also be later used when encrypting data. The
KeyDataBlob passed as argument to BCryptImportKey describes the key. Based on the

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/aa375370(v=vs.85)

5/8

BCRYPT_KEY_DATA_BLOB_HEADER the key data size is 32 bytes, i.e., 256 bits (Figure 5). To generate the
same symmetric key, the server needs the public key of the malware which it prepends to the request sent to
the server.

(Figure 5: VMRay function log – sequence of BCrypt calls responsible for key derivation (left) and pseudo-code
of the data structure describing the key (right).)

Usage of the Elliptic Curve Digital Signature Algorithm (ECDSA)

The server’s ECDSA public key is used to verify the response messages the malware receives. The server’s
DSA public key is imported just like ECDH public key was. When an encrypted response from the server
arrives, it is first decrypted with BCryptDecrypt (no padding is used). It then calculates the SHA256 hash of the
decrypted data and uses BCryptVerifySignature to verify the integrity and authenticity, i.e., that it matches with
the embedded signed hash – signature (Figure 6).

https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_key_data_blob_header

6/8

(Figure 6: VMRay function log – BCrypt functions used when verifying the response)

Conclusion

We have looked at one of the updated components of Emotet which involves the usage of cryptography. The
most obvious element is that the malware developers switched from the RSA algorithm to using elliptic curves.
Emotet has been encrypting its communication for a long time, but the recent change might be due to a lot of
factors like, e.g., smaller key sizes and better security. The C2’s response is now checked for its integrity and
authenticity by using ECDSA with a separate key. While using ECDH the symmetric key is never transmitted
over the wire and instead the server generates the key from the public key of the malware. We have also
observed the switch from CryptoAPI to CNG, which might be due to the fact that the CryptoAPI has been
officially deprecated or that it simply didn’t support elliptic curve cryptography.

IOCs

Initial Sample 7443d5335a207cca176825bd774a412e72882c815206c7f59ace1feb111bb4e9

Server’s ECC keys

ECDH:
86M1tQ4uK/Q1Vs0KTCk+fPEQ3cuwTyCz+gIgzky2DB5Elr60DubJW5q9Tr2dj8/gEFs0TIIEJgLTuqzx+58sdg==

ECDSA:
QF90tsTY3Aw9HwZ6N9y5+be9XoovpqHyD6F5DRTl9THosAoePIs/e5AdJiYxhmV8Gq3Zw1ysSPBghxjZdDxY+Q==

Emotet C&Cs

7/8

hXXps://131[.]100.24.231:80
hXXps://209[.]59.138.75:7080
hXXps://103[.]8.26.102:8080
hXXps://178[.]79.147.66:8080
hXXps://51[.]38.71.0:443
hXXps://79[.]172.212.216:8080
hXXps://162[.]214.50.39:7080
hXXps://203[.]114.109.124:443
hXXps://45[.]142.114.231:8080
hXXps://212[.]237.5.209:443
hXXps://104[.]251.214.46:8080
hXXps://212[.]237.56.116:7080
hXXps://107[.]182.225.142:8080
hXXps://104[.]168.155.129:8080
hXXps://138[.]185.72.26:8080
hXXps://45[.]118.135.203:7080
hXXps://216[.]158.226.206:443
hXXps://103[.]75.201.2:443
hXXps://158[.]69.222.101:443
hXXps://178[.]63.25.185:443
hXXps://45[.]118.115.99:8080
hXXps://46[.]55.222.11:443
hXXps://192[.]254.71.210:443
hXXps://217[.]182.143.207:443
hXXps://110[.]232.117.186:8080
hXXps://81[.]0.236.90:443
hXXps://176[.]104.106.96:8080
hXXps://103[.]8.26.103:8080
hXXps://50[.]116.54.215:443
hXXps://195[.]154.133.20:443
hXXps://51[.]68.175.8:8080
hXXps://58[.]227.42.236:80
hXXps://173[.]212.193.249:8080
hXXps://212[.]237.17.99:8080
hXXps://41[.]76.108.46:8080
hXXps://45[.]176.232.124:443
hXXps://207[.]38.84.195:8080

References

https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-003.pdf

https://www.europol.europa.eu/media-press/newsroom/news/world%e2%80%99s-most-dangerous-malware-
emotet-disrupted-through-global-action

https://cyber.wtf/2021/11/15/guess-whos-back/

https://blog.malwarebytes.com/threat-intelligence/2021/11/trickbot-helps-emotet-come-back-from-the-dead/

https://link.springer.com/book/10.1007/978-3-642-04101-3

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/

https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-003.pdf
https://www.europol.europa.eu/media-press/newsroom/news/world%e2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://cyber.wtf/2021/11/15/guess-whos-back/
https://blog.malwarebytes.com/threat-intelligence/2021/11/trickbot-helps-emotet-come-back-from-the-dead/
https://link.springer.com/book/10.1007/978-3-642-04101-3
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/

8/8

https://nakedsecurity.sophos.com/2017/08/10/watch-out-for-emotet-the-trojan-thats-nearly-a-worm/

https://unit42.paloaltonetworks.com/unit42-malware-team-malspam-pushing-emotet-trickbot/

https://www.virusbulletin.com/virusbulletin/2019/10/vb2019-paper-exploring-emotet-elaborate-everyday-enigma/

https://docs.microsoft.com/en-us/windows/win32/seccng/about-cng

https://docs.microsoft.com/en-us/windows/win32/seccng/cryptographic-primitives

https://docs.microsoft.com/de-de/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_ecckey_blob

https://nakedsecurity.sophos.com/2017/08/10/watch-out-for-emotet-the-trojan-thats-nearly-a-worm/
https://unit42.paloaltonetworks.com/unit42-malware-team-malspam-pushing-emotet-trickbot/
https://www.virusbulletin.com/virusbulletin/2019/10/vb2019-paper-exploring-emotet-elaborate-everyday-enigma/
https://docs.microsoft.com/en-us/windows/win32/seccng/about-cng
https://docs.microsoft.com/en-us/windows/win32/seccng/cryptographic-primitives
https://docs.microsoft.com/de-de/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_ecckey_blob

