
1/15

A detailed analysis of Lazarus APT malware disguised as Notepad++ Shell Extension
cybergeeks.tech/a-detailed-analysis-of-lazarus-malware-disguised-as-notepad-shell-extension/

Summary

Lazarus has targeted its victims using job opportunities documents for companies such as LockHeed Martin, BAE Systems, and Boeing. In this
case, the threat actor has targeted people that are looking for jobs at Boeing using a document called Boeing BDS MSE.docx
(https://twitter.com/ShadowChasing1/status/1455489336850325519). The malware extracts the hostname, username, network information, a
list of processes, and other information that will be exfiltrated to one out of the four C2 servers. The data targeted for exfiltration is compressed,
XOR-encrypted and then Base64-encoded before being transmitted to the C2 server. The Trojan implements four actions that include
downloading and executing a .exe or .dll file, loading a PE (Portable Executable) into the process memory, and executing shellcode.

Analyst: @GeeksCyber

Technical analysis

SHA256: 803dda6c8dc426f1005acdf765d9ef897dd502cd8a80632eef4738d1d7947269

The file is a DLL that has 7 exports. Only one of these functions implements malicious activity (DllGetFirstChild):

Figure 1

The malware retrieves the User Agent by calling the ObtainUserAgentString function. There is also a User Agent that is hardcoded in the
binary “Mozilla / 5.0 (Windows NT 10.0; WOW64; Trident / 7.0; rv:11.0) li”, which is Internet Explorer on Windows 10:

Figure 2
The binary extracts the current system date and time using the GetSystemTimeAsFileTime API:

Figure 3
GetModuleHandleW is utilized to retrieve a module handle for ntdll.dll:

Figure 4
The process gets the address of the following export functions using the GetProcAddress routine: “RtlGetCompressionWorkSpaceSize”,
“RtlCompressBuffer”, “RtlDecompressBuffer”, “RtlGetVersion”. An example of a function call is shown in figure 5:

https://cybergeeks.tech/a-detailed-analysis-of-lazarus-malware-disguised-as-notepad-shell-extension/
https://twitter.com/ShadowChasing1/status/1455489336850325519
https://twitter.com/GeeksCyber

2/15

Figure 5
The NetBIOS name of the local computer is extracted via a function call to GetComputerNameW:

Figure 6
The GetAdaptersInfo API is used to retrieve adapter information for the local machine:

Figure 7
The MAC address extracted above is written to a buffer:

Figure 8

The file extracts the command-line string for the current process:

Figure 9
CommandLineToArgvW is utilized to extract an array of pointers to the command-line arguments, along with a count of arguments (similar to
argv and argc):

Figure 10
According to an article published at https[:]//zhuanlan.zhihu.com/p/453894016, the malware is supposed to run with the following parameters:

“NTPR
P6k+pR6iIKwJpU6oR6ZilgKPL7IxsitJAnpIYSx2KldSSRFFyUIzTBVFAwgzBkI2PS/+EgASBik/GgYBwBbRNy7pP+Xq4uTsxOXU6NPmudaEz7Xy5fL

The binary decrypts the above parameter using a custom algorithm displayed in figure 11. The list of resulting strings contains multiple C2
servers:

Figure 11

3/15

Figure 12

The following URLs have been decrypted:

https[:]//mante.li/images/draw.php

https[:]//bmanal.com/images/draw.php

https[:]//shopandtravelusa.com/vendor/monolog/monolog/src/Monolog/monolog.php

https[:]//industryinfostructure.com/templates/worldgroup/view.php

The GetNetworkParams routine is used to retrieve network parameters for the local computer:

Figure 13
The malicious process extracts the name of the DNS domain assigned to the local host (0x2 = ComputerNameDnsDomain):

Figure 14
The following network information is written to a temporary buffer:

Figure 15

4/15

Figure 16

The process gets the username associated with the current thread by calling the GetUserNameW function:

Figure 17
The binary takes a snapshot of all processes in the system using the CreateToolhelp32Snapshot API (0x2 = TH32CS_SNAPPROCESS):

Figure 18
The file extracts information about the first process from the snapshot via a call to Process32FirstW:

Figure 19
The malicious binary opens the process object using the OpenProcess routine (0x410 = PROCESS_QUERY_INFORMATION |
PROCESS_VM_READ):

5/15

Figure 20
Whether the file doesn’t have enough rights to open a process, it copies “Unknown” along with the process name to a temporary buffer.

The binary takes a snapshot of the current process along with all its modules using the CreateToolhelp32Snapshot API (0x8 =
TH32CS_SNAPMODULE):

Figure 21
Module32FirstW is utilized to retrieve information about the first module associated with the current process:

Figure 22
The malicious DLL gets information about the next process recorded in the snapshot:

Figure 23
The OpenProcessToken routine is used to open the access token associated with a process (0x8 = TOKEN_QUERY):

Figure 24
GetTokenInformation is utilized to extract the user account of the token (0x1 = TokenUser):

Figure 25

6/15

The process retrieves the name of the account for a SID and the name of the first domain on which the SID is found via a function call to
LookupAccountSidW:

Figure 26
GetTokenInformation is utilized to extract the Terminal Services session identifier associated with the token (0xC = TokenSessionId):

Figure 27
The RtlGetCompressionWorkSpaceSize API is used to determine the correct size of the WorkSpace buffer for the RtlCompressBuffer function
(0x102 = COMPRESSION_FORMAT_LZNT1 | COMPRESSION_ENGINE_MAXIMUM):

Figure 28
The process compresses the buffers from figures 15 and 16 using the RtlCompressBuffer function (0x102 =
COMPRESSION_FORMAT_LZNT1 | COMPRESSION_ENGINE_MAXIMUM):

Figure 29
The DLL randomly chooses a C2 server from the list of four. It initializes the application’s use of the WinINet functions via a call to
InternetOpenW:

7/15

Figure 30
InternetCanonicalizeUrlW is used to canonicalize the URL:

Figure 31
The malware cracks the URL into its component parts by calling the InternetCrackUrlW API:

Figure 32
The connect, send and receive timeouts are set to 150s using the InternetSetOptionW routine (0x2 =
INTERNET_OPTION_CONNECT_TIMEOUT, 0x5 = INTERNET_OPTION_SEND_TIMEOUT, 0x6 =
INTERNET_OPTION_RECEIVE_TIMEOUT):

Figure 33

Figure 34

Figure 35

8/15

The DLL opens an HTTP session to the C2 server on port 443 (0x3 = INTERNET_SERVICE_HTTP):

Figure 36
The binary creates a POST request handle to the URI extracted from the specified URL:

Figure 37
The security flags for the handle are set using the InternetSetOptionW API (0x1F = INTERNET_OPTION_SECURITY_FLAGS, 0xF180 =
SECURITY_FLAG_IGNORE_REVOCATION | SECURITY_FLAG_IGNORE_UNKNOWN_CA |
SECURITY_FLAG_IGNORE_CERT_CN_INVALID | SECURITY_FLAG_IGNORE_CERT_DATE_INVALID |
SECURITY_FLAG_IGNORE_REDIRECT_TO_HTTP | SECURITY_FLAG_IGNORE_REDIRECT_TO_HTTPS):

Figure 38
The buffer (concatenation of two buffers) that was compressed earlier is encrypted using XOR (key = 32-byte array):

Figure 39

9/15

Figure 40

The encrypted buffer from above is encoded using Base64:

Figure 41

Figure 42

The binary constructs the following parameters “search=YOIPOUP&ei=6128&oq=<Base64-encoded buffer>”:

Figure 43

The User Agent extracted earlier is added to the HTTP request handle using the HttpAddRequestHeadersW routine (0xA0000000 =
HTTP_ADDREQ_FLAG_REPLACE | HTTP_ADDREQ_FLAG_ADD):

10/15

Figure 44
HttpSendRequestW is used to exfiltrate data to the C2 server:

Figure 45
It’s worth mentioning that all C2 servers were down during our analysis. We’ve emulated network connections using FakeNet.

The size of the C2 response is retrieved by calling the HttpQueryInfoW routine (0x5 = HTTP_QUERY_CONTENT_LENGTH):

Figure 46
The binary copies the C2 response to a buffer via a function call to InternetReadFile:

Figure 47
The malicious process parses the data between the “<html></html>” and “<div></div>” tags:

Figure 48

The malware performs a similar POST request with different parameter values “search=DOWPANY&ei=6128”:

11/15

Figure 49
The C2 response is decoded using Base64, and then XOR decrypted. The malware implements 4 different actions that will be explained based
on the EAX register value:

Figure 50

EAX = 0 – load a PE into the current process memory

GetNativeSystemInfo is utilized to retrieve information about the current system:

Figure 51
The DLL performs multiple VirtualAlloc function calls that will allocate memory for the new executable (0x3000 = MEM_COMMIT |
MEM_RESERVE, 0x4 = PAGE_READWRITE):

Figure 52
The malware changes the memory protection depending on the segment (for example, the code segment’s memory protection is set to 0x20 =
PAGE_EXECUTE_READ):

12/15

Figure 53
After a few more operations, the process passes the control flow to the new PE.

EAX = 1 – download and execute a .exe file

The binary gets the AppData folder path by calling the SHGetFolderPathW routine (0x1c = CSIDL_LOCAL_APPDATA):

Figure 54
GetTickCount is used to extract the number of milliseconds that have elapsed since the system was started:

Figure 55
The malware creates a file based on the above value (0x40000000 = GENERIC_WRITE, 0x1 = FILE_SHARE_READ, 0x2 =
CREATE_ALWAYS, 0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 56
The newly created file is populated with content that is supposed to be transmitted by the C2 server:

Figure 57
The malicious binary executes the file by calling the CreateProcessW API:

13/15

Figure 58

EAX = 2 – download and execute a .dll file

The execution flow is similar to the above case, and we only highlight the difference. Rundll32.exe is used to execute the DLL file (an export
function can also be specified in the command line):

Figure 59
EAX = 3 – copy and execute shellcode

The process allocates memory using the VirtualAlloc routine (0x1000 = MEM_COMMIT, 0x40 = PAGE_EXECUTE_READWRITE):

Figure 60
The DLL implements an anti-analysis check. It calls the isProcessorFeaturePresent API in order to determine whether _fastfail() is available. If
this feature is not supported, the current process is terminated by calling the GetCurrentProcess and TerminateProcess functions (0x17 =
PF_FASTFAIL_AVAILABLE):

14/15

Figure 61

The malware jumps to the shellcode and then frees the memory area allocated earlier:

Figure 62

As we mentioned at the beginning of the analysis, the threat actor only added the export function explained above, and the others are
legitimate.

We’ve studied a legitimate Notepad++ shell extension (SHA256: f3e2e6f9e7aa065e89040a0c16d1f948489b3751e5eb5efac8106d5f7d65d98d
64-bit) and compared the export functions between the 2 files. As we can see below, the functions are very similar:

Figure 63

15/15

Figure 64
References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

Fakenet: https://github.com/fireeye/flare-fakenet-ng

VirusTotal: https://www.virustotal.com/gui/file/803dda6c8dc426f1005acdf765d9ef897dd502cd8a80632eef4738d1d7947269

MalwareBazaar: https://bazaar.abuse.ch/sample/803dda6c8dc426f1005acdf765d9ef897dd502cd8a80632eef4738d1d7947269/

INDICATORS OF COMPROMISE

C2 domains:

mante.li

bmanal.com

shopandtravelusa.com

industryinfostructure.com

SHA256: 803dda6c8dc426f1005acdf765d9ef897dd502cd8a80632eef4738d1d7947269

URLs:

https[:]//mante.li/images/draw.php
https[:]//bmanal.com/images/draw.php
https[:]//shopandtravelusa.com/vendor/monolog/monolog/src/Monolog/monolog.php
https[:]//industryinfostructure.com/templates/worldgroup/view.php

https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/fireeye/flare-fakenet-ng
https://www.virustotal.com/gui/file/803dda6c8dc426f1005acdf765d9ef897dd502cd8a80632eef4738d1d7947269
https://bazaar.abuse.ch/sample/803dda6c8dc426f1005acdf765d9ef897dd502cd8a80632eef4738d1d7947269/

