Malware Headliners: LokiBot

atomicmatryoshka.com/post/malware-headliners-lokibot

z3r0day_504 January 28, 2022

$ capa lokidump.exe

579/579 [00:00<00:00, 1371.18 rules/s]
| 203/203 [00:07<00:00, 26.64 functions/s]

e T +

| e9d4075a8labcebl4c259908323438a9

| 5d6a92cccb58163bee4355c0T2844d9b96ca2548

| 71el55ee000c0dlcbbal8b92f0d512217afel95bad0f9326c60523cdfd3fa742

| lokidump.exe

::Indicator Removal from Tools [T1027.065]
[T1827]
[T1129]
[T1134]

::Argument Ob
1:X0R [C0O26.002]

::Encoding-Standard Algorithm [E1027.m@2]

LokiBot, or Loki, is a password stealing malware and was considered the 8th most prevalent
malware family in 2021 according to MalwareBazaar. Available for sale on underground
forums, its within reach of anyone willing to pay the right price. As far as its use by organized
actors, MITRE has linked its usage to the SilverTerrier threat group, known for having
financial cybercrime motives.

In this blog post we'll conduct some static and dynamic analysis on a LokiBot sample to
extract IOCs and characterize its behavior.

STATIC ANALYSIS WITH PESTUDIO 9.27

Using the latest version of PeStudio, we start to build a picture of what the specimen is
capable of. Taking a look at the imports/functions category, we see the following:

1/9

https://www.atomicmatryoshka.com/post/malware-headliners-lokibot
https://attack.mitre.org/groups/G0083/

=B c\users\user\deskto phc27e339893d3e5fc1ebler3

----- &l indicators (45)

..... > dos-header (64 bytes)
- [EM dos-stub (144 bytes)
..... = rich-header (Visual Studio)
----- = file-header (Qct.2008)
..... » optienal-header (GUI)
..... = directories (3)
..... > sections (virtualized)
1 libraries (8) *

BRI functions (155)

ol

..... 4 resources (6) *
----- abe strings (3464)

----- Ef manifest (aslnvoker)

CreateFileA)

RegSetValue, RegQueryValue)

functions (133)

SearchPathd
MowveFiled
SetCurrentDirectonyd,
SetFileAttributesf
CreateProcessA

RemoveDirectoryd

GetTempFileMarnef
GetExitCodeProcess

WritePrivateProfileStringd,
WriteFile

FindMextFiled
FindFirstFile&

DeleteFilef

CloseClipboard
SetClipboardData
ErmnptyClipboard
SysternParametersinfof
OpenClipboard
ExitWindowsEx
SHGetPathFromIDListA
SHBrowseForFolderd
SHGetFilelnfos
ShellExecuted

Based on the imports, this sample shows potentially:

File writing (CreateFileA, WriteFile, MoveFile)

blacklist (29)

=

oM oM o®H X M HM o H M M ®2H X M 2 M M M ¥3H ¥ M =2 X

Anti-debugging capabilities (EmptyClipboard, GetTickCount)

ancnymous (1)

Parsing through files and folders (FindFirstFileA, FindNextFileA, SearchPath,

Evasive behaviors/artifact destruction (DeleteFile, RemoveDirectory)

libbrary (2]

Registry interactions (RegCreateKey, RegDeleteKey, RegEnumKey, RegOpenKey,

Looking at the strings tab, we see a lot of the same references to the API calls, especially if
sorting for blacklist items to show first:

2/9

file settings about

ol IS
=B cusershuser\desktop\.c27e339893d3e5fc1e61e73 encoding {2) size (bytes) file-offset blacklist (33) hint (99) value (3464)
4l indicators (43) - e i
ascii g X g
2 ascii 18 x leProcess
> dos-header (64 bytes) asell 12
n
B dos-stub (144 bytes) ! =
H = 9 ascn 14 x
rich-header (Visual Studio) .
. file-header (Oct.2008) il = x
» optional-header (GUI) “‘_'_' 14 L
directories (3) el 13 L
sections (vtualized ascii 26 x SHGetSpecialFolderLocation
27 libraries (8) * ascii 10 x DeleteFile
<] functions (155) ascii 13 * EindFirstFile
' ascii 12 x
=0 ascii 25 X WiritePrivateProfileString
I ascii 10 x SearchPath
‘i resources (6) * ascii 8 x MoveFile
B strings (3464) ascii 19 X SetCurrentDirectory
ATk ascii 17 x
..f manifest (aslnvoker) ascii 12 =
{59 m
= ascii 15 x
Bl overlay |
] overlay (Nullsoft) ascii 5 N
ascii 20 x
ascii 15 x SHFileOperation
ascil 12 x ShellExecute
ascii 13 X SHGetFilelnfo

Outside of those, nothing is proving to be too conclusive here.

| pushed the file over to REMnux to give a stab at it with capa. Capa gave the following
output:

x:~$% capa lokibot
| 579/579 [00:00<00:00, 1591.19 rules/s]
| 83/83 [00:06<00:00, 13.00 functions/s]

: This sample appears to be an installer.

: capa cannot handle installers well. This means the results may be misleading or incomplete
. You should try to understand the install mechanism and analyze created files with capa.
WARNING: capa:

: Use -v or -vv if you really want to see the capabilities identified by capa.

In order to analyze further with capa, I'll need to dump the actual malware executable once it
starts running during the dynamic analysis stage and rebuild it. I'll have those details after the
dynamic analysis section.

DYNAMIC ANALYSIS

3/9

Prior to detonating the sample, | had Process Hacker, Process Monitor, and WireShark
running to capture any events. | was able to capture the following data:

[albcf76813 7a7.exe (10436) Properties — O
General Statistic . nt
B Results - c27e3398%3d3e5fc1ebl e73ffafacBa7bcfT6813a921... — O *
B Hide free reg Strings... Refresh
1,268 results.
Base address Address Length Result Total WS Private WS Shareable
» 10008 0x9e 160 34 \REGISTRY\MACHINE — 68
z E:ﬁggg 0x3ebb0 32 YIMACHINE\Softwa li:kkg 122
—— Ox%ec2 32 \REGISTRY\MACHIN 12 kB 1248
— Ox%ectl 52 ies\Microsoft\Cryptography —_— 0ke
> 012000 Ox%eed0 58 Ciwindows\SysWoweantdll. dl P &
0x15c022 20 rofapi.dll
? 0x1b0000 | | o 16 035 22 sechost.dl 4B i
? 010000 |y dac12a 20 rofapi.dl 8ke 8ke
z E:ig[[]];;; 0x19c620 28 C:\ProgramData jiﬁ ji
0x19cE60 20 C:\Windows
2 0x200000 || o\ 1ocsaq 32 gram Files (x88) . 56 kB
> 400088 0x15d4fa 38 C:\Windows\SysWowe4 Bk 648 kb
z E:zgggg 0x15d730 54 C\windows\System32\WSI.dll 23 kk_g 60 kB 68
Ox19e2ec 16 5442136.smrip.ru
7 0x4e0000 || 4 joeara 16 $442136.5mrip.ru i +k8
2 0x40000 || o 1geesc 32 £442136.5mrip.ru - &8
> DxS10368 Ox19eebe 32 5442136.smrtp.ru 12k8 2
z g::iggg 0x19ff12 25 JOLEAUT32.dll liﬁ 8ks 2
0x19fF30 20 ws2_32.dl
; g:;:gggg 0x1c03e0 12 ApphelpDebug Bé;$ Bé;
0x1c043c 12 shimengstate
7 0x630000 | | 1 nass 12 ShimDebuglog e 68
» 0x650000 o o e e am e e oo | —

The memory strings in Process Hacker offered some IOCs. We see a domain
(s442136.smrtp[.Jru) as well as some registry interactions.

Process Monitor offered the following:

4/9

We see a ton of "CreateFile" operations with browser file paths. It would be easy to be misled

2:185..
2:18:5...
2:18:5...
2:185..
2:18:5...
2:185..
2:18:5...
2:18:5...
2:18:5...
2:18:5...
2:185..
2:18:5...
2:185..
2:18:5...
2:18:5...
2:185..
2:18:5..
2:185..
2:18:5...
2:18:5...
2:185..
2:18:5...
2:185..

B c27233589343...
B c272339893d3...
B c272335893d3. ..
B c77e339893d3.
I c2723359893d3. ..
B 2723358932
B c27233989343...
B c272335893d3 ..
B c272339893d3...
I c2723359893d3. ..
B 2723358932
I c2723359893d3...
B c272335893d3 ..
B c272339893d3...
B c272335893d3. ..
B 27233589343
B c272335893d3...
B c27233589343...
B c272339893d3...
B c272335893d3. ..
B c77e339893d3.
I c2723359893d3. ..
B 2723358932

C::Users\User'AppDatatLocal Michrome' User Data®\Default’Login Data
C:M\UsersUser'App Data“Local \Michrome' User Data*\Default"Web Data
C:\UsershUserAppDatatLocalMichromeLogin Data
C::\UsersUser'AppDatat LocalMichrome \Default Login Data
C:\Users'User\AppData*Local \Rock Melt.User Data“\DefaultLogin Data
C:\UsershUser'AppData*Local\Rock Melt'.User Data*Default\Web Data
C:5\Users'User'\AppData* LocalRock Melt\Login Data
C:\UsershUser\AppDatatLocalRock Melt\Default' Login Data
C:\Users'User'\AppDatatLocal\Spark i\ User Data'\Default’Login Data
C:\UsershUzerAppDatatLocal Spark \User Data“\DefaultWeb Data
C:M\UsershUser'AppDatatLocal Sparc\Login Data
C:M\Users'User'AppData“Local Spark\Default ' Login Data
C::\Users\User'AppData“Local\Chromium*.User Data‘\Default\Login Data
C:M\Users User'App Data“Local\Chromium*.User Data'DefaultWeb Data
C:\Users\UserAppDatatLocalChromiumLogin Data
C::UsersUser'App Data*LocalChromiumDefault\Login Data
C:A\Users'User'\AppDatatLocal'\Titan BrowseriUser Data‘\Default'Login Data
C:UsershUser'AppDatatLocal'\Titan BrowseriUser Data‘\DefaultvWeb Data
C:M\Users User'\AppDatatLocal Titan Browser'\Login Data
C:\UsershUserAppDatatLocal Titan Browser\Default'Login Data
C:\UsersUser'AppDatatLocal\ Torch User Data‘\Default’Login Data
C:\Users'User\AppDatatLocal Torch User Data’\DefaultWeb Data
C:A\UsershUser'AppDatatLocal Torch'\Login Data

PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:
PATH NOT FOUND Desired Access:

by the fact that the operation title is "CreateFile" and believe that the executable is
attempting to generate files on the victim system. Reading Microsoft documentation offers
some more context:

CreateFileA function (fileapi.h)

Article « 10/13/2021 = 29 minutes to read

Is this page helpful? & 47

Creates or opens a file or /0O device. The most commonly used 1/0O devices are as follows: file, file stream, directory,

physical disk, volume, console buffer, tape drive, communications resource, mailslot, and pipe. The function returns a

handle that can be used to access the file or device for various types of I/0O depending on the file or device and the flags

and attributes specified.

To perform this operation as a transacted operation, which results in a handle that can be used for transacted 1/O, use the

CreateFileTransacted function.

A 0000000000000 00000000D

Not only does this function allow for the creation of files, but also opening them. On the right
side of the Process Monitor screenshot we see the value "path not found," meaning that the
malware tried to open or access the browser file paths and they did not exist. Being that the
malware is a password stealer, it is likely checking these file paths for saved credentials.

Seeing the WireShark output, we see information that corroborates earlier findings:

[X]

M "Ethemet0 =
File Edit View Go Capture Analyze Telephony Wireless Tools Help
Am 2@ BRE Re2EF 4 =qQaqH
[Tdns
Na. Time Source Destination Protocol Length Info
1889 84.348713 255.22.168.192.in-a- 192.168.22.133 DHS 185 Standard query response @xcdad A au.download.windowsupdate.com A 19
t= 1153 95.328881 192.168.22.133 255.22.168.192.in-addr.arpa DNS 76 |Standard query @x5868 A s442136.smrtp.ru |
+t 1154 95.322228 255.22.168.192.in-a_ 192.168.22.133 DNS 92 Standard query response @x5068 A $442136.smrtp.ru A 192.168.22.128

5/9

REBUILDING WITH SCYLLA

So like | mentioned early on, the initial file is an installer and not the actual child process that
we've analyzed in the dynamic stage. I'll demonstrate how one could actually get a "tangible"
version of the malware that's executing to then analyze it with tools like capa. The tool we'll

be using is Scylla, and imports reconstructor developed by NtQuery and available on GitHub.

First, make sure the malware is already running. Next open Scylla x86 and attach it to the
active process. Click "IAT autosearch," and then "get imports," followed by "dump." Name it
something intuitive, and voila. This will reconstruct the executable.

6/9

https://github.com/NtQuery/Scylla

B 5oz x86v0.9.8 - X

File Imports Trace Misc Help

Attach to an active process
4360 - c272339893d3e5fc e 1e 73 ffafacBabof 768 1329219 1ecfa38 5352 10d6cTar .exe - CilUs ~ Pick DLL

Imports

kernel32.dll {5) FThunk: 00015000
oleaut32.dll 3) FThunk: 00015018
ws2_32.dll (8) FThunk: 00015023
ole32.dll {3) FThunk: 0001504C

7 (2038) FThunk: 0001506C
vaultdli,dll (7) FThunk: 0001A0E4
7 (1) FThunk: 00014110

HLHEALALS S

Show Invalid Show Suspect Clear

IAT Info Actions Dump

OEP 00403225 IAT Autosearch Autotrace PE Rebuild

VA 00415000

Get Imports -
Size 0008696C -t Fix Dump

Log

getApiByvirtualaddress ;. No Api found 756AA39C
getApiByvirtualAddress 1 Mo Api found 72230000

IAT parsing finished, found 26 valid APIs, missed 2039 APIs

DIRECT IMPORTS - Found O possible direct imports with 0 unigue APIs!
YWARMIMG! IAT is not inside the PE image, reguires rebasing!

Dump success C:sersiUseriDesk okidump. exe

Imports: 2085 ¥ Invalid: 2039 Imagebase: 00400000 c27e330393d3e5fcleblel:

| pushed this version back over to the REMnux box for analysis, and it worked fine with capa:

7/9

capa lokidump.exe
100, 1371.18 rules/s]
100, 26.64 functions/s]

€9d4075a81abce614c259908323438a9
5d6a92ccch58163beed355c012844d9b96ca2548
71e155ee000c0d1lcbbal8b92f0d512217afel95bad0f9326c60523cdfd3fa742
lokidump.exe

::Indicator Removal from Tools [T1027.005]
[T1027]
[T1129]
[T1134]

::Argument Obfuscation [B0012.001]
::XOR [C0026.002]

::Encoding-Standard Algorithm [E1027.m02]

We can also feed this new executable back into PEStudio for its new assessment:

kvp e

S@0123456T780ARBCDEF

UMNICUE

S0Lite format 3

DlIRycqltP2vSeang)SbEUFZOIHTId mKCnBuf T sOY0h pwrd IWINXEIGBAKL ME

e F

An interesting catch that | didn't catch before is the reference in strings to SQLite. A lot of
browsers saved passwords in SQLite databases which, if we didn't know what this was
ahead of time, we could safely lean towards it being a browser password stealer.

I0Cs

File Hashes:
Installer:

c27e339893d3eb5fc1eb1e73ffafac8a7bcf76813a92f91ecfa38535210d6¢7a7

8/9

Dropped executable:
71e155ee000c0d1cbba18b92f0d512217afe195ba40f9326c60523cdfd3fa742

Domains:

s442136.smrtp[.]ru

REFERENCES:

LokiBot Malware (CISA)

New Campaign Sees LokiBot Delivered Via Multiple Methods (TrendMicro)

Scylla

9/9

https://www.cisa.gov/uscert/ncas/alerts/aa20-266a
https://www.trendmicro.com/en_us/research/21/h/new-campaign-sees-lokibot-delivered-via-multiple-methods.html

