
1/9

Threat Intelligence Team January 26, 2022

KONNI evolves into stealthier RAT
blog.malwarebytes.com/threat-intelligence/2022/01/konni-evolves-into-stealthier-rat/

This blog post was authored by Roberto Santos

KONNI is a Remote Administration Tool that has being used for at least 8 years. The North
Korean threat actor that is using this piece of malware has being identified under the
Kimsuky umbrella. This group has been very busy, attacking political institutions located in
Russia and South Korea. The last known attack where KONNI Rat was used was described
here.

We found that KONNI Rat is being actively developed, and new samples are now including
significant updates. In this blog post, we will cover some of the major changes and explain
why the security community should keep a close eye on it.

Simplified Attack Chain

The attack usually starts leveraging a malicious Office document. When this document is
opened by the victim, a multistage attack is started, involving various steps. But these steps
are just the way that the attackers manage to accomplish tasks to elevate privileges, evade
detection and deploy required files. As we described in a previous blog post, the attack chain
could be summarized in the following diagram:

https://blog.malwarebytes.com/threat-intelligence/2022/01/konni-evolves-into-stealthier-rat/
https://www.proofpoint.com/sites/default/files/threat-reports/pfpt-us-tr-threat-insight-paper-triple-threat-N-Korea-aligned-TA406-steals-scams-spies.pdf
https://blog.lumen.com/new-konni-campaign-targeting-russian-ministry-of-foreign-affairs
https://blog.malwarebytes.com/threat-intelligence/2021/08/new-variant-of-konni-malware-used-in-campaign-targetting-russia/

2/9

Simplified attack chain
The attack usually starts leveraging a malicious Office document. When this document is
opened by the victim, a multistage attack is started, involving various steps. But these steps
are just the way that the attackers manage to accomplish tasks to elevate privileges, evade
detection and deploy required files.

The final goal of the attack is installing what is called KONNI Rat, which is a .dll file
supported by an .ini file. In a nutshell, the .dll file contains the functionality of the RAT, and
the .ini file contains the address of the first C&C server. KONNI Rat’s general behavior
remains almost the same as previous versions, but there are changes we will cover below.

Rundll no longer supported

In previous KONNI Rat samples there were two branches. One handles if the malware was
launched using a Windows service, and the other handles the execution through rundll. The
next image shows these two old branches, with the strings svchost.exe and rundll32.exe
visible:

Old main function showing svchost.exe and rundll32.exe strings

https://blog.malwarebytes.com/wp-content/uploads/2022/01/attackchain.drawio.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-2.png

3/9

However, new samples will not show these strings. In fact, rundll is no longer a valid way
to execute the sample. Instead, when an execution attempt occurs using rundll, an
exception is thrown in the early stages.

Exception produced by a rundll execution
In early stages of our analysis, we thought that they were using the classic process name
check, or any other usual technique. The reality is far simpler and brilliant; the actual export
just implements the SvcMain prototype so the program will break at some point when
accessing one of the arguments.

In the previous image we see the state of the machine at the moment that this exception is
thrown. RDI at that point should contain a pointer to the service name. The exception
happens because the Service Main function meets one prototype and rundll32 will expect
another different prototype:

VOID WINAPI SvcMain(DWORD dwArgc, LPTSTR *lpszArgv)

VOID WINAPI runnableExport(HWND hwnd, HINSTANCE hinst, LPSTR lpszCmdLine, int
nCmdShow)

Basically, at some point of the execution, hinst will be treated as lspzArgv, causing the
exception. But why did the attackers delete that functionality? There are multiple benefits.

First of all, we have not seen any recent attack that used rundll. In fact, the only way that the
attackers launched KONNI Rat in recent campaigns involves registering a Windows service.
So the rundll32 branch wasn’t being used in real world attacks.

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-3.png

4/9

But there is another big reason in how sandboxes will fail in collecting the real behavior of
the sample, as it just cannot execute that way.

Strings are now protected using AES

Multiple malware families protect their strings in order to defeat most basic string analysis.
KONNI wasn’t an exception, and also used this technique. Old samples were using base64
for obfuscation means. Also, they were using a custom alphabet. This custom alphabet was
changed from time to time in order to make the decoding task more difficult:

Old Konni samples included their custom base64 alphabet followed by the obfuscated strings
Now, the attackers made a major change in that regard by protecting the strings using AES
encryption. The algorithm followed by new Konni RAT samples could be represented as
follows:

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-4.png

5/9

New KONNI samples now uses AES encryption for string protection
The reason behind that change is clear. As the key used for decryption is the service name,
samples run by different service names will not work properly. Moreover, having only the
sample without knowing the service name becomes useless, as these strings contain
core information about the sample behavior.

Files are also protected using AES

KONNI Rat makes use of various support files when it is executed. One of these files is the
.ini file, which contains the primary C&C server, but there are others like the .dat file that is
supposed to be dropped eventually, and temporal files that are used to send some basic
information about the computer.

Our tests reveal that all of these files are dropped and protected using AES. Cleverly, they
reused the algorithm used for string protection, making the file layout identical to the
protected strings layout, as they appear in raw memory:

New

KONNI samples now uses AES encryption also for file protection
As can be seen from the diagram, the file itself contains the IV and the encrypted data. The
key used is extracted from its original filename. In some cases, the names match with the
service name, so the keys used in the .ini and the .dat files are the result of applying a

https://blog.malwarebytes.com/wp-content/uploads/2022/01/encryption.drawio.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/filelayout.drawio.png

6/9

SHA256 to the service name as well.

Also, files sent to the C&C server are protected using AES. The IV is generated using a
QueryPerformanceCounter API CALL. Filenames are generated concatenating 2 letters that
represent the data with the current timestamp, followed by the extension. Furthermore, they
will use this newly generated name as AES key, so they send this name through the request
to the C&C server.

Fragment of request about to be sent to the server
In that regard, as the filename is generated automatically using the timestamp, identical files
will produce different request contents, as they were encrypted using that filename. Network
signatures could also fail to detect the malicious activity, due to that.

Other obfuscation techniques

As we found some samples that were protected just by the means that we described before,
we also have found others that were making use of an unidentified packer (UPDATE: There
is a strong correlation between this packer and VMPROTECT v3, as you would see in the
following paragraphs. Later deeper analysis tasks suggest that this is probably the packer
that was used in this ocasion). We would like to share some of our notes regarding that
packer, as others could find it useful in identification and attribution tasks.

Contiguous instruction obfuscation

The flow of the obfuscated program will make use of series of push-call pairs of instructions,
where the pushed values will indicate the actions that the program will take. An image can
better explain that:

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-25.png

7/9

Push – Call series
In particular, we find it interesting that the attackers have placed random bytes between
these pairs. This silly trick causes wrong code interpretation for decompilers that will assume
that bytes after the push instruction are part of the next instruction. The image below shows
how IDA fails in analyzing the code:

Same code as before, showing how IDA won’t represent the real code

Obfuscated program flow

The used packer will obfuscate the original program flow. This is accomplished in various
steps. The first required step is to find the Image Base value, placed in a fixed location and
the RIP (Instruction Pointer) value.

https://blog.malwarebytes.com/wp-content/uploads/2022/01/untitled13.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled11.png

8/9

EBX will save the RIP value
Once the packer knows these two values, it will start jumping from one place to another,
making analysis harder. For that, it will store in some register value of the next address to
jump in registers. The value of these registers is calculated right after the jmp instruction,
using structures like POP [reg] – JMP [reg] or ADD [reg1, reg2] – JMP [reg1]. Note that
decompilers will fail in displaying the real flow, as the jumping address is determined by a
somehow undefined register.

Obfuscated code showing a final jmp to RBX

The combination of these simple techniques ends in the packer being now in control of the
flow, but statically the decompiler cannot represent the path that the code will follow. Finally,
the packer will execute a big amount of junk instructions and eventually will execute the real
interesting code. For instance, the original code will take no more than 20 instructions
between GetProcAddress calls in IAT building tasks. but the packed code executes more
than 30,000 instructions.

According to our threat intel data, most recent attacks are not making use of that packer
anymore.

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-44.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-55.png

9/9

Conclusion

As we have seen, KONNI Rat is far from being abandoned. The authors are constantly
making code improvements. In our point of view, their efforts are aimed at breaking the
typical flow recorded by sandboxes and making detection harder, especially via regular
signatures as critical parts of the executable are now encrypted.

Malwarebytes users are protected against this attack.

IOCs

A3CD08AFD7317D1619FBA83C109F268B4B60429B4EB7C97FC274F92FF4FE17A2
 F702DFDDBC5B4F1D5A5A9DB0A2C013900D30515E69A09420A7C3F6EAAC901B12

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-14-1.png

