KONNI evolves into stealthier RAT

blog.malwarebytes.com/threat-intelligence/2022/01/konni-evolves-into-stealthier-rat/

Threat Intelligence Team January 26, 2022

This blog post was authored by Roberto Santos

KONNI is a Remote Administration Tool that has being used for at least 8 years. The North
Korean threat actor that is using this piece of malware has being identified under the
Kimsuky umbrella. This group has been very busy, attacking political institutions located in
Russia and South Korea. The last known attack where KONNI Rat was used was described
here.

We found that KONNI Rat is being actively developed, and new samples are now including
significant updates. In this blog post, we will cover some of the major changes and explain
why the security community should keep a close eye on it.

Simplified Attack Chain

The attack usually starts leveraging a malicious Office document. When this document is
opened by the victim, a multistage attack is started, involving various steps. But these steps
are just the way that the attackers manage to accomplish tasks to elevate privileges, evade
detection and deploy required files. As we described in a previous blog_post, the attack chain
could be summarized in the following diagram:

1/9

https://blog.malwarebytes.com/threat-intelligence/2022/01/konni-evolves-into-stealthier-rat/
https://www.proofpoint.com/sites/default/files/threat-reports/pfpt-us-tr-threat-insight-paper-triple-threat-N-Korea-aligned-TA406-steals-scams-spies.pdf
https://blog.lumen.com/new-konni-campaign-targeting-russian-ministry-of-foreign-affairs
https://blog.malwarebytes.com/threat-intelligence/2021/08/new-variant-of-konni-malware-used-in-campaign-targetting-russia/

Konni RAT
W —
INI file

Simplified attack chain

The attack usually starts leveraging a malicious Office document. When this document is
opened by the victim, a multistage attack is started, involving various steps. But these steps
are just the way that the attackers manage to accomplish tasks to elevate privileges, evade
detection and deploy required files.

The final goal of the attack is installing what is called KONNI Rat, which is a .dll file
supported by an .ini file. In a nutshell, the .dll file contains the functionality of the RAT, and
the .ini file contains the address of the first C&C server. KONNI Rat’s general behavior
remains almost the same as previous versions, but there are changes we will cover below.

Rundll no longer supported

In previous KONNI Rat samples there were two branches. One handles if the malware was
launched using a Windows service, and the other handles the execution through rundll. The
next image shows these two old branches, with the strings svchost.exe and rundll32.exe
visible:

result = GetMeduleFileNamel(@iss, &v4, 268i64);
if ((_DWORD)result)

if (Strstri(&v4, L svchost.exe™))

qword_186@06CD8 = RegisterServiceCtrlHandlerW(*servicelame, serviceCallbackFunction);
if (!{unsigned int)sub_18eee4318(2, 3688) &% qword_138806CD35)
sub_186@04318(1, @);
result = sub_1880843AC();
if (gwerd 12e@esCDs)
result = sub_l8e0e4318(1, @);
}

else

{
result = Strotri(@v4, L"rundll32.exe™);
if (result)
result = sub_l18808424C();
}

h
Old main function showing svchost.exe and rundll32.exe strings

2/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/attackchain.drawio.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-2.png

However, new samples will not show these strings. In fact, rundll is no longer a valid way
to execute the sample. Instead, when an execution attempt occurs using rundll, an
exception is thrown in the early stages.

ECPU | 4 Log | |_,.|Notes | #® Breakpoints | ¥ Memory Map | [call Stack | =7 SEH | lt3| Seript | ‘EISymbols | < Sr.liILI
" gue ¢ o FEPNE SCasw .]
. mov qword ptr ss:irbp+23],rax R AR
. mu': gword ptr 55:[rhp—30],rax RAX 0000000000000000 A
. not rex 2 I g
3 mov gword ptr ss:Qrbp+3sf,rax REX 000000000010F7DO Mz 3
. dec recx BLX FFFFFFFFFFFFFFFF =
. add ecx,ecx RDX 0000000000000000 —
a test r9,r9 (7l Rep 000C00000010F720
jmm = ° je lastkonni.7FEF75350D6 | RSP ooODODODOODDOLIOFEZO
! . test ecx,ecx RSI 0000000000000000
1 r----e je lastkonni.7FEF7S535DD6 0000000300905 A4D
b . mov edx,ecx _EB?
b lea rarq“g'”d ptr ss:[frbp+20 RE DO0000000002CASZ0
I L] MoV FCX,F
' r i R9 0000000300905 A4D
Ll e ;3,11 El:SE'fE"m erii: TACD RiD 0O00D000077Z4041A user3z.ooc
236
. €all lastkonni.7FEF7538800 Ri1 0000000O0D10F6ESD
. mov rdi,rax R1Z 0000000000000001
o test rax,rax R13 0000000000000000
PR je lastkonni.7FEF7535E79 R14 0000000000000000
i . xor edx,edx R15 0000000000000000
! . mov r8d,236 & e
i b P T p
"] 0000000000000000
B Dump 1| G4y Dump 2 | &4 Dump 3 | G Dump 4 | G4 Dump 5 | wi! |* F500000000010F 0000000000021330 | Feturn
Address Hex 00000000001 O0000AF 30 2CIFDAA
0000000077 33100000 00 00 00|85 1C GE 5C |00 OO OO 00|02 00 00 cu:nl | 333333333313_ gggggggggggﬁgggg rundljligy
0000000077331010| 22 00 00 00 B2 00 00|D4 A6 00 00|00 00 00 ool Jeems -t | 6o0aD0n000000001 (1
0000000077331020/C8 €3 28 7700 00 00 00128 03 238 7700 00 00 00 | 540500000010F 650 | DO0D0D00000000000 A
DO00D00077331030 | ES 68 38 77100 00 00 00|08 €9 28 77100 00 00 00 ~ | mamanoooon ol 220 D00
4 | 1 | k 4| 1 | b
Command: Commands are comma seperated (like assenkbly instructicns): mov eax, ebx Default hd

| Paused IFrstdﬂance EEMMUUUUU?FE:?SSSDAE (C0000005, EI_CEF’TIDN ACCESS '.I"IU_A'I'IEI! I |Trne Wasted Debugging: 0:07:08:53
Exception produced by a rundll execution

In early stages of our analysis, we thought that they were using the classic process name
check, or any other usual technique. The reality is far simpler and brilliant; the actual export
just implements the SvcMain prototype so the program will break at some point when
accessing one of the arguments.

In the previous image we see the state of the machine at the moment that this exception is
thrown. RDI at that point should contain a pointer to the service name. The exception
happens because the Service Main function meets one prototype and rundll32 will expect
another different prototype:

VOID WINAPI SveMain(DWORD dwArgc, LPTSTR *lpszArgv)

VOID WINAPI runnableExport(HWND hwnd, HINSTANCE hinst, LPSTR IpszCmdLine, int
nCmdShow)

Basically, at some point of the execution, hinst will be treated as IspzArgv, causing the
exception. But why did the attackers delete that functionality? There are multiple benefits.

First of all, we have not seen any recent attack that used rundll. In fact, the only way that the
attackers launched KONNI Rat in recent campaigns involves registering a Windows service.
So the rundll32 branch wasn’t being used in real world attacks.

3/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-3.png

But there is another big reason in how sandboxes will fail in collecting the real behavior of
the sample, as it just cannot execute that way.

Strings are now protected using AES

Multiple malware families protect their strings in order to defeat most basic string analysis.
KONNI wasn’t an exception, and also used this technique. Old samples were using base64
for obfuscation means. Also, they were using a custom alphabet. This custom alphabet was
changed from time to time in order to make the decoding task more difficult:

3 Segment permissions: Read/Write
_data segment para public 'DATA' use&4
assume cs:_data

;org 13eeaseash

customBe4Alphabet db 'TYXpzsuDoFSMmd7@kX¥BGKHObEZSyEVcRIPSAO4aWh1F2E1-Exvqrwlj93CL=INIne"
; DATA XREF: posEncodeBuffer+ADto

; decodeStr+27To ...
db @
align 1eh
5 CHAR stringl[]
stringl db '6jU0cKNACsSFsRqYYRzkiBz1pHHvpy jCryjvdoXNjozdEZuHkEQVA0XNwo sFsEUNZH"
; DATA XREF: sub_13808424C+19%c

3 sub_laeesd424C+2BTo

db "wNBEXTEZXTjdGTxmBTEZ8ee',® ; cmd /c REG ADD HKCU\Console /v CodePage /t REG _DWORD /d 65881 /T

align 1&h
5 CHAR string2[]
string2 db 'SjHgyaHtmro-Zuvt',® ; DATA XREF: posIATBuild+2Fto
; posIATBuild+41te
; kernel32.dll
align 8
3 CHAR string3[]
string3 db "kQ¥jebYlmro-Zuvt',® ; DATA XREF: posIATBuild+9E9To

3 posIATBuild+9FBto
5 Advapi32.dll

Old Konni samples included their custom base64 alphabet followed by the obfuscated strings
Now, the attackers made a major change in that regard by protecting the strings using AES
encryption. The algorithm followed by new Konni RAT samples could be represented as
follows:

4/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-4.png

service name

CHUNK OF
ENCRYPTED
E@B sha256 transform DATA

|

N h%-AEs KEY—>

encrypted strings

plaintext strings

New KONNI samples now uses AES encryption for string protection

The reason behind that change is clear. As the key used for decryption is the service name,
samples run by different service names will not work properly. Moreover, having only the
sample without knowing the service name becomes useless, as these strings contain
core information about the sample behavior.

Files are also protected using AES

KONNI Rat makes use of various support files when it is executed. One of these files is the
.ini file, which contains the primary C&C server, but there are others like the .dat file that is
supposed to be dropped eventually, and temporal files that are used to send some basic
information about the computer.

Our tests reveal that all of these files are dropped and protected using AES. Cleverly, they
reused the algorithm used for string protection, making the file layout identical to the
protected strings layout, as they appear in raw memory:

encrypted datafile

KONNI samples now uses AES encryption also for file protection

As can be seen from the diagram, the file itself contains the IV and the encrypted data. The
key used is extracted from its original filename. In some cases, the names match with the
service name, so the keys used in the .ini and the .dat files are the result of applying a

5/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/encryption.drawio.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/filelayout.drawio.png

SHAZ256 to the service name as well.

Also, files sent to the C&C server are protected using AES. The IV is generated using a
QueryPerformanceCounter APl CALL. Filenames are generated concatenating 2 letters that
represent the data with the current timestamp, followed by the extension. Furthermore, they
will use this newly generated name as AES key, so they send this name through the request
to the C&C server.

debugBas : 0000R08088256628 a7e4512a60722C0 3 db " --- - -- - 7e4512a68722" ,8Dh,8Ah
debugBas : pee0e00000256628 db "Content-Disposition: form-data; name="fileToUpload"; filename="ff"
debugBEE: BEEREEEREE256628 db " B1-13 17-88-38.txt"',8Dh,08Ah

debugBEE: peEREEEEER256628 db "Content-Type: application/octet-stream’,8Dh,8Ah
debugBBE : BABRRRAERA256628 db BDh,BAN,8

Fragment of request about to be sent to the server

In that regard, as the filename is generated automatically using the timestamp, identical files
will produce different request contents, as they were encrypted using that flename. Network
signatures could also fail to detect the malicious activity, due to that.

Other obfuscation techniques

As we found some samples that were protected just by the means that we described before,
we also have found others that were making use of an unidentified packer (UPDATE: There
is a strong correlation between this packer and VMPROTECT v3, as you would see in the
following paragraphs. Later deeper analysis tasks suggest that this is probably the packer
that was used in this ocasion). We would like to share some of our notes regarding that
packer, as others could find it useful in identification and attribution tasks.

Contiguous instruction obfuscation

The flow of the obfuscated program will make use of series of push-call pairs of instructions,
where the pushed values will indicate the actions that the program will take. An image can
better explain that:

6/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-25.png

638 A9 F1 7C @1 . push 17CF1ASh

E& 38 62 F3 FF call loc_13@1D6F84
97 xchg eax, edi
68 33 59 34 AD push BFFFFFFFFA9345933h
E8 C9 3A FE FF call loc_188284820
G db 6Ah ;]
e e e
68 AA 79 B 33 push 33B679A%N
E8 BC 91 F8 FF call loc_18@8229F1E
12 95 49 83 28 4E adc dl, [rbp+4E288849h]
DATA XREF: .qwdfre:eeeeseelde2sdliDllo
qudfre:eeeeesels02A41E810
63 5@ 78 8A B9 push 6598A73858h
E8 EE 99 F7 FF call loc_13@219E60
7E db 7Eh ; ~
68 57 58 BC B3 push BFFFFFFFFB3BCS857h
E8 Al 91 F8 FF call loc_18@8229F1E
e e e
36 db 8gh ; T

Push — Call series

In particular, we find it interesting that the attackers have placed random bytes between
these pairs. This silly trick causes wrong code interpretation for decompilers that will assume
that bytes after the push instruction are part of the next instruction. The image below shows
how IDA fails in analyzing the code:

hS A9 F1 7C B1 push 17CF1ASh

E& 38 82 F3 FF call loc_13@1D6F84

a7 xchg eax, edi

68 33 539 34 AS push BFFFFFFFFAS345933h

E8 C9 3A FE FF call loc_138284328

6A 68 push 68h ; 'h’

AR stosh

79 BB jns short near ptr loc 186248D1842

33 E3 xor ebp, eax

BC 91 F8 FF 12 mov esp, 12FFF891h ; DATA XREF: .qwdfré:58088881382A410Ct
3 .qwdfre:eseesaslsp2Ad1Esio

95 xchg eax, ebp

49 88 28 mow [r8], bpl

4E 68 5B 78 8A B9 push 698A7858h

E8 EE 9@ F7 FF call loc_13@8219E68

7E B3 jle short near ptr loc_l1882A8DD8+4

57 push rdi

58 pop rax

BC B3 E& Al 91 mov esp, 91&1E3B3h

F3 cle

FF 86 B3 9@ 42 B4 inc dword ptr [rsi+64428865h]

FC cld

Same code as before, showing how IDA won’t represent the real code

Obfuscated program flow

The used packer will obfuscate the original program flow. This is accomplished in various
steps. The first required step is to find the Image Base value, placed in a fixed location and
the RIP (Instruction Pointer) value.

7/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/untitled13.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled11.png

. 3362563999999999929999 Lo RAX _0000000000000000
° D2F3 shl bl1.cl [REX___00000001801E917E |
. 4C:2BD8 sub rii,rax RCX 00007537D5930000
. FEDE neg bl EDX 0000000000000000
. A8: 0EBEDD movsx cds 3 REP 0000000000298C 60
RE s 1 4B8: 801D F3IFFFFFF lea rbx,gword ptr ds:[1801E917E]] RSP 00000000004EF920
. BFE/DO MOVEX X, anx RSI 0000000000Z98500
. g 49: B1EA 04000000 sub rio,4 RDI 00000000004EFAAS
FIF e T D000000 80 BODA A3 sbb d1,4z

EBX will save the RIP value
Once the packer knows these two values, it will start jumping from one place to another,
making analysis harder. For that, it will store in some register value of the next address to
jump in registers. The value of these registers is calculated right after the jmp instruction,
using structures like POP [reg] — JMP [reg] or ADD [reg1, reg2] — JMP [reg1]. Note that
decompilers will fail in displaying the real flow, as the jumping address is determined by a
somehow undefined register.

¥

¥mlprov. 0000000180210 98C
ror ecx,3
Jjmp xmlprov.180224679

¥

xm1prov.0000000180224679
Xor ecx,72350D0BE

test riliw, 3627

neg ecx

Jjmp xmlprov.180232E6C

¥

¥ml prov. 000000018023 2E6C
dec ecx
jmp xmlprov.1801B957E

¥

xmlprov.0000001801E957E H i H
push ril = Obfuscated code showing a final jmp to RBX

shl riib,SE

xor dword ptr ss:[frsp],ecx
rol rii,cl

pop rii

movsxd rcx,ecx

Cmp ax,rldw

test rizb,al

Jjmp xmlprov. 180249256

¥

¥mlprov. 0000000180249256
add rbx,rcx
Jjmp xmlprov. 180103404

¥

¥ml prov. 0000000180102 404
Jjmp rbx

The combination of these simple techniques ends in the packer being now in control of the
flow, but statically the decompiler cannot represent the path that the code will follow. Finally,
the packer will execute a big amount of junk instructions and eventually will execute the real
interesting code. For instance, the original code will take no more than 20 instructions
between GetProcAddress calls in IAT building tasks. but the packed code executes more
than 30,000 instructions.

According to our threat intel data, most recent attacks are not making use of that packer
anymore.

8/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-44.png
https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-55.png

Conclusion

As we have seen, KONNI Rat is far from being abandoned. The authors are constantly
making code improvements. In our point of view, their efforts are aimed at breaking the
typical flow recorded by sandboxes and making detection harder, especially via regular
signatures as critical parts of the executable are now encrypted.

Malwarebytes users are protected against this attack.

@ Malware automatically quarantined

Type: Malware
Mame: Malware Al.4162307428
Path: ChUsers), \DesktopikonniMew.dll

I0OCs

A3CDO08AFD7317D1619FBA83C109F268B4B60429B4EB7C97FC274F92FFAFE17A2
F702DFDDBC5B4F1D5A5A9DB0A2C013900D30515E69A09420A7C3F6EAAC901B12

9/9

https://blog.malwarebytes.com/wp-content/uploads/2022/01/Untitled-14-1.png

