
1/11

Yaron Samuel January 25, 2022

Weaponization of Excel Add-Ins Part 1: Malicious XLL Files
and Agent Tesla Case Studies

unit42.paloaltonetworks.com/excel-add-ins-malicious-xll-files-agent-tesla/

By Yaron Samuel

January 25, 2022 at 6:00 AM

Category: Malware

Tags: AgentTesla, Cortex, Dridex, Macros, Microsoft Excel, next-generation firewall, WildFire

This post is also available in: 日本語 (Japanese)

Executive Summary

Between July 27 and Dec. 1, 2021, Unit 42 researchers observed a new surge of Agent Tesla and
Dridex malware samples, which have been dropped by Excel add-ins (XLL) and Office 4.0 macros.
We have found that the Excel 4.0 macro dropper is mainly used to drop Dridex, while the XLL
droppers are used to drop both Agent Tesla and Dridex. While malicious XLL files have been known
for quite some time, their reappearance in the threat landscape is a new trend and possibly indicates
a shift toward this infection vector.

The XLL files we observed were mainly distributed via emails that contain price quote luring contents
sent from an abcovid[.]tech email address with the email subject “INQUIRY.” Targets of these emails
include organizations in the following sectors: manufacturing; retail; federal, state and local
government; finance; pharmaceuticals; transportation; education; and several others across the
United States, Europe and Southeast Asia. Furthermore, some of the malicious XLL files we have
seen abuse a legitimate open-source Excel add-in framework named Excel-DNA.

https://unit42.paloaltonetworks.com/excel-add-ins-malicious-xll-files-agent-tesla/
https://unit42.paloaltonetworks.com/author/yaron-samuel/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/agenttesla/
https://unit42.paloaltonetworks.com/tag/cortex/
https://unit42.paloaltonetworks.com/tag/dridex/
https://unit42.paloaltonetworks.com/tag/macros/
https://unit42.paloaltonetworks.com/tag/microsoft-excel/
https://unit42.paloaltonetworks.com/tag/next-generation-firewall/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/excel-add-ins-malicious-xll-files-agent-tesla/
https://excel-dna.net/


2/11

This blog is the first of a two-part series. Here, we take a look into the XLL file attributes, the abused
legitimate open-source framework and the final Agent Tesla payload. The second part of the series
will deal with the other infection flows, the XLL and Excel 4 (XLM) droppers that deliver Dridex
samples.

Palo Alto Networks customers receive protections against the attacks discussed here through Cortex
XDR or the WildFire cloud-delivered security subscription for the Next-Generation Firewall.

Types of Attacks Covered Malware, Agent Tesla

Related Unit 42 Topics Dridex, Macros

Table of Contents

Chains of Infection
 What Is XLL Again?
 Malicious Excel Add-In (XLL) Dropper

 • Excel-DNA
 • Jack Resource

 Final Payload – Agent Tesla
 • String Decryption

 • Windows Vault
 Conclusion

 Indicators of Compromise
 Additional Resources

 Appendix A: Deobfuscated Code of the Function That Reads Windows Vault

Chains of Infection

The flow chart in Figure 1 shows the two possible chains of events we have observed during our
investigation:

A victim receives an email with a malicious attachment.
The attachment is either a malicious XLL or XLM file.
In the case of an XLL, when run it will either:

Drop an intermediate dropper that in turn will drop an Agent Tesla payload.
Download Agent Tesla payload from Discord.
Download Dridex payload from Discord.

In the case of an XLM, when run it will drop a VBS downloader that downloads and executes a
Dridex sample from Discord.

While Agent Tesla and Dridex infection chains are not necessarily distributed by the same actor, they
seem to be part of a new trend of infection vectors.

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/agenttesla/
https://unit42.paloaltonetworks.com/tag/dridex/
https://unit42.paloaltonetworks.com/tag/macros/
https://yoroi.company/research/office-documents-may-the-xll-technique-change-the-threat-landscape-in-2022/


3/11

Figure 1. Chains of infection.

What Is XLL Again?

XLL is an extension for Excel add-ins. In reality, XLL is just a regular PE-DLL file. The XLL file
extension is associated with an icon very similar to other Excel-supported extensions. In turn, the
average user won’t notice any difference between XLL and other Excel file formats and can be lured
to open it. This may be surprising, but Excel will gladly load and execute an XLL file upon double-
clicking.

Figure 2. XLL icon.



4/11

Once the XLL is loaded by Excel, it will invoke the export functions of the XLL file based on the
defined XLL interface. Two of these interface functions stand out: xlAutoOpen and xlAutoClose.
These functions get called once the add-in gets activated or deactivated, respectively. These
functions can be used to load malicious code, similar to the methods Auto_Open and Auto_Close in
classic VBA macros.

One disadvantage of XLL files is that they can only be loaded by Excel with the correct bitness. For
example, a 64-bit XLL can only be loaded by the 64-bit version of Excel. The same goes for 32-bit
versions. Therefore, malware authors have to rely on the Excel version that is installed on the
victim’s machine.

Like with VBA macros, Excel will warn the user about the security concern arising from executing the
add-in. In that aspect, it has no advantage for malware compared to VBA macros.

Figure 3. Warning by Excel while trying

to execute an XLL file.
For the reasons described, XLL files can be a good choice for adversaries seeking to gain an initial
foothold on a victim machine. An attacker can get code packaged into a DLL loaded by Excel, which
in turn may mislead security products that are not prepared to deal with this scenario.

Figure 4 shows an example of an XLL file in a PE editor. Among other exported functions, we can
find the xlAutoOpen and xlAutoClose functions.

https://docs.microsoft.com/en-us/office/client-developer/excel/add-in-manager-and-xll-interface-functions


5/11

Figure 4. Excel add-in exports as shown by the PE header editor CFF Explorer.

Malicious Excel Add-In (XLL) Dropper

We have observed malicious emails with the following XLL samples attached:

SHA256: 7a6f8590d4be989faccb34cd393e713fd80fa17e92d7613f33061d647d0e6d12
 SHA256: fbc94ba5952a58e9dfa6b74fc59c21d830ed4e021d47559040926b8b96a937d0

Excel-DNA

The XLL sample we encountered utilizes a legitimate open-source framework for Excel add-in
development called Excel-DNA. The framework has several features that also suit malware authors.
One is the ability to load a compressed .NET assembly packaged in the PE resources directly to
memory without “touching” the disk. Therefore, despite being a legitimate framework, Excel-DNA has
functionality that resembles malicious loaders and can be abused as a loader.

https://excel-dna.net/


6/11

Excel-DNA has another attribute that may hinder coverage with Yara, likely unknown even to the
malware authors. For some reason, many Excel-DNA samples have slightly more than 10,000
exported functions, most of them without any meaningful functionality. The Yara PE module export
function parsing limit is only 8,192. Therefore, a Yara rule that targets a certain export name located
at an index higher than 8192 will not match against the sample.

When we look at the resources of our Excel-DNA XLL, we can see an XML resource named
__MAIN__. This resource contains information about which module gets loaded by Excel-DNA. In
our case, the specified module will be decompressed from a resource named JACK.

The resource will be decompressed using the LZMA algorithm and subsequently loaded to memory.

Figure 5. Excel-DNA

resources.
We have created Python code for the extraction of such assemblies from an Excel-DNA add-in. You
can find this script on the Unit 42 GitHub repo.

JACK Resource

The loaded module is a simple dropper. Upon loading the module, the AutoOpen method will be
invoked. The malicious code in this method drops the final payload executable into
%AppData%\service.exe and executes it (see Figure 6). It’s worth noting that the module contained
in Jack is configurable, meaning in other versions it may download a payload instead of dropping it,
as well as dropping a real Excel template and executing it.

The configuration is displayed in Figure 7, which contains the following options:

bDown - Download the payload.
templateEnabled - Drop and open an Excel template.

https://github.com/VirusTotal/yara/blob/master/libyara/modules/pe/pe.c#L98
https://github.com/pan-unit42/iocs/tree/master/agent_tesla


7/11

payload - Contains the payload to be dropped.

Figure

6. Decompiled code of the JACK dropper module with the AutoOpen method, as shown by dnSpy. 

Figure 7. Dropper configuration variables and the final

payload contained in a byte array.

Final Payload – Agent Tesla

SHA256: AB5444F001B8F9E06EBF12BC8FDC200EE5F4185EE52666D69F7D996317EA38F3

The final payload is an obfuscated Agent Tesla sample. In terms of features, Agent Tesla is
extensively documented. Our sample exfiltrates the stolen data to the email
phantom1248@yandex[.]com using the SMTP protocol. Figure 8 shows the decompiled entry point
of our Agent Tesla sample. It is structured in a similar way to other Agent Tesla samples.

https://news.sophos.com/en-us/2021/02/02/agent-tesla-amps-up-information-stealing-attacks/
https://www.fortinet.com/blog/threat-research/new-agent-tesla-variant-spreading-by-phishing


8/11

Figure 8. Agent Tesla’s decompiled main function.

String Decryption

The Agent Tesla sample stores all of its strings in an encrypted form within a large array of
characters.

Upon initialization, the sample XORs each byte of the “large byte array” with the hard coded byte 170
and the index (trimmed to byte size) of the character in the “large byte array.” Next, the sample fills
an array that stores all the strings, by splicing the decrypted array in known offsets and
corresponding lengths. For instance, let’s examine the eight bytes in the offset 665:

Before execution (encrypted form) 28, 92, 94, 81, 25, 64, 88, 122

Upon initialization 
(after decryption, XORed with the index and 170)

47, 108, 111, 103, 46, 116, 109, 112

ASCII form after decryption /log.tmp

The code below assigns the 53rd member of the string’s array the eight bytes at offset 665 of the
decrypted byte-array.

Figure 9. String assignment code.
Examining the decrypted string array reveals the various targets that Agent Tesla aims to steal:

Sensitive browser information and cookies.
Mail, FTP and VPN client information.



9/11

Credentials from Windows Vault.
Recorded keystrokes and screenshots.
Clipboard information.

Windows Vault

To steal information from the Windows Vault, it appears that the Agent Tesla authors converted a
PowerSploit script into C# to build a .NET assembly.

It uses P/Invoke to call API functions from the vaultcli.dll library. At first, VaultEnumerateItems will be
called to get all available vaults. Next, each vault will be opened using VaultOpenVault. Once a vault
is open, the contained items will be enumerated using VaultEnumerateItems. Finally, the attributes of
the items are read using VaultGetItem. Agent Tesla records the queries as items in its own list
(manually deobfuscated code shown in Figure 10). The curious reader can find the fully
deobfuscated method in Appendix A.

Figure 10. Deobfuscated Agent Tesla code for recording extracted Windows Vault items.
Below is the list of Windows Vault GUIDs (and corresponding descriptions) that Agent Tesla uses to
steal information:

GUID Description

2F1A6504-0641-44CF-8BB5-3612D865F2E5 Windows Secure Note

3CCD5499-87A8-4B10-A215-608888DD3B55 Windows Web Password Credential

154E23D0-C644-4E6F-8CE6-5069272F999F Windows Credential Picker Protector

4BF4C442-9B8A-41A0-B380-DD4A704DDB28 Web Credentials

77BC582B-F0A6-4E15-4E80-61736B6F3B29 Windows Credentials

E69D7838-91B5-4FC9-89D5-230D4D4CC2BC Windows Domain Certificate Credential

3E0E35BE-1B77-43E7-B873-AED901B6275B Windows Domain Password Credential

3C886FF3-2669-4AA2-A8FB-3F6759A77548 Windows Extended Credential

Conclusion

https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-VaultCredential.ps1#L265
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke


10/11

For the recent surge of malware we observed, we analyzed the infection chain that uses Excel add-
ins (XLL). We also described how the malware author abuses the legitimate Excel-DNA framework
for the creation of these malicious XLLs. Lastly, we briefly described the final Agent Tesla payload
and which information it tries to exfiltrate from a victim’s system, with a focus on the Windows Vault
data. The usage of Excel add-ins in recent attacks may indicate a new trend in the threat landscape.

In the next part of this series, we will describe the other infection chain, which involves using Excel
4.0 macros to deliver Dridex.

Palo Alto Networks customers receive protections against the attacks discussed here through Cortex
XDR or the WildFire cloud-delivered security subscription for the Next-Generation Firewall.

If you think you may have been compromised or have an urgent matter, get in touch with the Unit 42
Incident Response team or call North America Toll-Free: 866.486.4842 (866.4.UNIT42), EMEA:
+31.20.299.3130, APAC: +65.6983.8730, or Japan: +81.50.1790.0200.

Palo Alto Networks has shared these findings, including file samples and indicators of compromise,
with our fellow Cyber Threat Alliance members. CTA members use this intelligence to rapidly deploy
protections to their customers and to systematically disrupt malicious cyber actors. Learn more about
the Cyber Threat Alliance.

Indicators of Compromise

Sample hash (SHA256) Description 

7a6f8590d4be989faccb34cd393e713fd80fa17e92d7613f33061d647d0e6d12 XLL dropper

fbc94ba5952a58e9dfa6b74fc59c21d830ed4e021d47559040926b8b96a937d0 XLL dropper

bfc32aab4f7ec31e03a723e0efd839afc2f861cc615a889561b38430c396dcfe Intermediate
dropper
(Jack)

AB5444F001B8F9E06EBF12BC8FDC200EE5F4185EE52666D69F7D996317EA38F3 Final Agent
Tesla
payload

Additional Resources

Appendix A: Deobfuscated Code of the Function That Reads Windows Vault

See more information on GitHub.

Get updates from 
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/network-security/next-generation-firewall
http://start.paloaltonetworks.com/contact-unit42.html
http://www.cyberthreatalliance.org/
https://github.com/pan-unit42/iocs/tree/master/agent_tesla


11/11

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

