
1/28

January 25, 2022

Chasing Chaes Kill Chain
decoded.avast.io/anhho/chasing-chaes-kill-chain/

by Anh Ho and Igor MorgensternJanuary 25, 202215 min read

Introduction

Chaes is a banking trojan that operates solely in Brazil and was first reported in
November 2020 by Cybereason. In Q4 2021 , Avast observed an increase in Chaes’

activities, with infection attempts detected from more than 66,605 of our Brazilian
customers. In our investigation, we found the malware is distributed through many
compromised websites, including highly credible sites. Overall, Avast has found Chaes’
artifacts in 800+ websites. More than 700 of them contain Brazilian TLDs. All
compromised websites are WordPress sites, which leads us to speculate that the attack
vector could be exploitation of vulnerabilities in WordPress CMS . However, we are unable
to perform forensics to confirm this theory. We immediately shared our findings with the
Brazilian CERT (BR Cert) with the hope of preventing Chaes from spreading. By the time

of this publication, Chaes’ artifacts still remain on some of the websites we observed.

Chaes is characterized by the multiple-stage delivery that utilizes scripting frameworks such
as JScript , Python , and NodeJS , binaries written in Delphi , and malicious Google
Chrome extensions . The ultimate goal of Chaes is to steal credentials stored in Chrome
and intercept logins of popular banking websites in Brazil .

In this posting, we present the results of our analysis of the Chaes samples we found in Q4
2021 . Future updates on the latest campaign will be shared via Twitter or a later post.

Infection Scheme

When someone reaches a website compromised by Chaes, they are presented with the
below pop-up asking users to install the Java Runtime application:

https://decoded.avast.io/anhho/chasing-chaes-kill-chain/
https://decoded.avast.io/anhho/chasing-chaes-kill-chain/
https://www.cybereason.com/hubfs/dam/collateral/reports/11-2020-Chaes-e-commerce-malware-research.pdf
https://twitter.com/AvastThreatLabs

2/28

If the user follows the instructions, they will download a malicious installer that poses as a
legitimate Java Installer . As shown below, the fake installer closely imitates the
legitimate Brazilian Portuguese Java installer in terms of appearance and behavior.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image13-3.jpg

3/28

Once the installation begins, the user’s system is compromised. After a few minutes, all web
credentials, history, user profiles stored by Chrome will be sent to attackers. Users may
experience Google Chrome getting closed and restarted automatically. This indicates any
future interactions with the following Brazilian banking websites will be monitored and
intercepted:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image1.jpg
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image20.png

4/28

mercadobitcoin.com.br

mercadopago.com.[ar|br]

mercadolivre.com.br

lojaintegrada.com.br

Technical Analysis

Infected websites

Upon inspecting the HTML code of the compromised websites, we found the malicious script
inserted as shown below:

In this case, the V=28 likely represents the version number. We also found a URL with
other versions as well:

https://is[.]gd/EnjN1x?V=31

https://is[.]gd/oYk9ielu?D=30

https://is[.]gd/Lg5g13?V=29

https://is[.]gd/WRxGba?V=27

https://is[.]gd/3d5eWS?V=26

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image22-3.jpg

5/28

The script creates an HTML element that stays on top of the page with “Java Runtime
Download” lure. This element references an image from a suspicious URL

https://sys-dmt[.]net/index.php?D\

https://dmt-sys[.]net/

and an on-click download of a Microsoft Installer from

https://bkwot3kuf[.]com/wL38HvYBiOl/index.php?get or
https://f84f305c[.]com/aL39HvYB4/index.php?get or
https://dragaobrasileiro[.]com.br/wp-content/themes/getCorsFile.php

Microsoft Installer

The flowchart below shows the infection chain following the malicious installer execution.

6/28

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/Chaes.drawio.png

7/28

Inside the MSI package

The installer contains 3 malicious JS files install.js , sched.js , and sucesso.js
renamed to Binary._ as shown above. Each of them handles a different task, but all are
capable of reporting the progress to the specified CnC :

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image2.jpg

8/28

Implementation of the logging function across all 3 scripts

install.js

The purpose of this script is to download and execute a setup script called runScript that
will prepare the proper Python environment for the next stage loader. After making an
HTTP request to a hardcoded domain, the obfuscated runScript is downloaded and then
executed to perform the following tasks:

Check for Internet connection (using google.com)
Create %APPDATA%\\<pseudo-random folder name>\\extensions folder
Download password-protected archives such as python32.rar/python64.rar and
unrar.exe to that extensions folder

Write the path of the newly created extensions folder to
HKEY_CURRENT_USER\\Software\\Python\\Config\\Path

Performs some basic system profiling
Execute unrar.exe command with the password specified as an argument to
unpack python32.rar/python64.rar
Connect to C2 and download 32bit and 64bit __init__.py scripts along with 2
encrypted payloads. Each payload has a pseudo-random name.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_2.png

9/28

runScript.js content

sched.js

The purpose of this script is to set up persistence and guarantee the execution
of __init__.py downloaded by runScript from the previous step. Sched.js
accomplishes this by creating a Scheduled Task as its primary means and creating a
Startup link as its backup means. Ultimately, they are both able to maintain the after-

reboot execution of the following command:

 ...\\<python32|python64>\\pythonw.exe __init__.py /m

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_3.png

10/28

ScheduledTask Configuration

sucesso.js

This script reports to CnC that the initial installation on the victim’s computer has succeeded
and is ready for the next stage

Python Loader Chain

The Scheduled Task created by sched.js eventually starts __init__.py
whichinitiates the Python in-memory loading chain. The loading chain involves many
layers of Python scripts, JS scripts, shellcode, Delphi DLLs, and .NET PE which we will
break down in this section. Impressively, the final payload is executed within __init__.py
process (PID 2416 and 4160) as shown below:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/scheduleTask.png

11/28

__init__.py

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image23.png

12/28

Obfuscated content
The __init__.py xor decrypts and decompresses the pseudo-random filename
downloaded by runScript.js into another Python script. The new Python script contains
2 embedded payloads: image and shellcode in encrypted form. Image represents the
Chaes loader module called chaes_vy.dll while shellcode is an in-memory PE loader.
We found this particular loader shellcode reappearing many times in the later stages of
Chaes. Running the shellcode using CreateThread API with proper parameters pointing to
chaes_vy.dll , the Python script eventually loads chaes_vy.dll into memory:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_1.png

13/28

chaes_vy.dll is loaded into memory by an embedded shellcode

Chaes_vy.dll

Chaes_vy is a Delphi module that loads an embedded .NET executable that in turn
runs 2 JavaScripts : script.js and engine.js . These two scripts hold the core
functionalities of the Chaes_vy module.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_4.png

14/28

script.js

This script acts as the interface between .NET framework and JScript framework, providing
the necessary utilities to execute any scripts and modules that engine.js downloads in
the future. By default, script.js will try to retrieve the paths to payloads specified in the
argument of __init__.py . If nothing is found it will execute engine.js

engine.js

This script employs 2 methods of retrieving a JS payload: getBSCode() and
getDWCode() both are called every 6 minutes.

GetBSCode is the primary method, also the only one we are able to observe serving
payload. The encrypted payload is hidden as commented-out code inside the HTML page of
a Blogspot which is shown below. Without being infected by Chaes, this site is completely
harmless.

View of the Blogpost page contains hidden malicious code
On the other hand, when executed, engine.js will parse the string starting from <div
id=\”rss-feed\”> which is the marker of the encrypted payload:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image4.jpg

15/28

Hidden code
After decrypting this text using AES with a hardcoded key, instructions.js is retrieved
and executed. This script is in charge of downloading and executing Chaes’ malicious
Chrome “extensions”. More info about instructions.js is provided in the next section.

getDWCode is the secondary method of retrieving instruction.js . It employs a DGA
approach to find an active domain weekly when getBSCode fails. Since we are not able to
observe this method being used successfully in the wild, we have no analysis to present
here. However, you can check out the full algorithm posted on our Github.

Instructions.js

Instructions.js is the last stage of the delivery chain. Nothing up to this point has
gained the attacker any true benefits. It is the job of instructions.js to download and
install all the malicious extensions that will take advantage of the Chrome browser and harm
the infected users. The address of all payloads are hardcoded as shown below:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image15.png
https://github.com/avast/ioc/tree/master/Chaes/extras/DGA.js
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_7.png

16/28

The extensions are separated into password-protected archives vs encrypted binaries. The
non-compressed payloads are PE files that can be run independently while compressed
ones add necessary NodeJS packages for the extension to run. Below is the example of
chremows63_64 archive contents:

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_7.png

17/28

All the binaries with dll_filename argument such as chromeows2.bin are encrypted,
including the ones inside the RAR archive. The decryption algorithm is located inside
script.js as we mentioned in the previous section. To decrypt and run each binary,

Chaes needs to call __init__.py with the file path specified as an argument.

The extension installation can be simplified into the following steps:

An HTTP Request (aws/isChremoReset.php) is sent to check if Google Chrome
from a particular uid has been hooked. If not, Chrome and NodeJS will be closed.
More information about uid in the “Online” section below.
The download request is constructed based on 3 scenarios: 32bit, 64bit, and no
Google Chrome found. Each scenario will contain suitable versions of the extensions
and their download links.
The extension is downloaded. The compressed payload will be unpacked properly.
A hosts file is created for the newly downloaded module. Inside the file is the CnC
randomly picked from the following pool:

Each extension will use the address specified in hosts for CnC communication

Launch each extension through python.exe __init__.py with proper arguments as
shown below

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image12-1.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_8.png

18/28

Extensions

Online

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_9.png

19/28

online.dll is a short-lived Delphi module that is executed by instruction.js
before other modules are deployed. Its main purpose is to fingerprint the victim by
generating a uid which is a concatenation of drive C: VolumeSerialNumber ,
UserName , and Computername . The uid is written to a register key
SOFTWARE\\Python\\Config\uid before being included inside the beaconing message.

This registry key is also where instruction.js previouslygets the uid asking CnC if the
victim’s Chrome has been hooked. The first time instruction.js gets launched this
registry has not been created yet, therefore the Chrome process is always killed.

Online.dll retrieves the CnC server specified in the hosts file and performs the
beaconing request /aws/newClient.php , sending the victim’s uid and basic system
information.

Mtps4 (MultiTela Pascal)

Module mtps4 is a backdoor written in Delphi . Its main purpose is to connect to CnC
and wait for a responding PascalScript to execute. Similar to the previous module, CnC
is retrieved from the hosts file. Mtps4 sends a POST request to the server with a
hardcoded User-Agent containing uid and command type. It currently supports 2
commands: start and reset . If the reset command is responded with ‘ (* SCRIPT
OK *) ’, it will terminate the process.

Start command is a bit more interesting.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image24.png

20/28

Example of an HTTP request with “start” command
As a reply to this command, it expects to receive a PascalScript code containing a
comment ‘ (* SCRIPT OK *)’.

mtps4 is compiled with https://github.com/remobjects/pascalscript to support PascalScript.
Before running, the script they create a window that copies the screen and covers the entire
desktop to avoid raising suspicion when performing malicious tasks on the system.

Unfortunately during the investigation, we couldn’t get hold of the actual script from the CnC.

Chrolog (ChromeLog)

Chrolog is a Google Chrome Password Stealer written in Delphi. Although it is listed as
an extension, Chrolog is an independent tool that extracts user personal data out of the
Chrome database and exfiltrates them through HTTP. The CnC server is also retrieved from
the hosts file previously created by instruction.js .

HTTP Request Data Exfiltration

/aws/newUpload.php Cookies, Web Data, and Login Data (encrypted)

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/mtps_http.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image25-1.png
https://github.com/remobjects/pascalscript
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image5.png

21/28

/aws/newMasterKey.php Chrome Master Key used to decrypt Login Data

/aws/newProfileImage.php Profile Image URL collected from
last_downloaded_gaia_picture_url_with_size attribute
inside Local State

/aws/newPersonalData.php Username, fullname, gaia_name

/aws/bulkNewLogin.php All Login Data is decrypted and added to local.sql
database. Then the corresponding section of the
database is exfiltrated

/aws/bulkNewUrl.php History is added to local.sql database. Then the
corresponding section of the database is exfiltrated

/aws/bulkNewAdditionalData.php Web Data is written to local.sql database. Then the
corresponding section of the database is exfiltrated

/aws/bulkNewProcess.php All running processes are collected and written to
local.sql database. Then the corresponding section of
the database is exfiltrated

(Cookies, Web Data, Login Data, History, and Local State is standardly located
at%APPDATA%\\Local\\Google\\Chrome\\User Data\\Default\\)

Chronodx (Chrome Noder)

chrolog.rar contains NodeJS packages and chronodx.bin aka Chronod2.dll.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image17-1.png

22/28

Chronodx dependency (“name”: “chremows” is indeed how it is defined)
The chronodx extension package can be separated into 2 parts: a loader called
Chronod2.dll and a JavaScript banking trojan called index_chronodx2.js . First,
Chronod2.dll performs an HTTP request /dsa/chronod/index_chronodx2.js to retrieve
index_chronodx2.js . If successful, Chronod2.dll will run silently in the background

until it detects the Chrome browser opened by the user. When that happens, it will close the
browser and reopen its own instance of Chrome along with index_chronodx2.js being run
from the node.exe process.

Chronodx in idle mode

Chronodx reopens Chrome and executes “node.exe index.js” command

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_10.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image19.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image11.png

23/28

Index.js is index_chronodx2.jsin this case
Index_chronodx2.js utilizes puppeteer-core, a NodeJS framework that provides APIs to

control Chrome browser, for malicious purposes. Index_chronodx2.js implements many
features to intercept popular banking websites in Brazil including

bancobrasil.com.br/aapf

bancodobrasil.com.br/aapf

bb.com.br/aapf

mercadopago.com/…/card_tokens/

mercadopago.com/enter-pass/

mercadolivre.com/enter-pass/

lojaintegrada.com.br/public/login/

mercadobitcoin.com.br

Upon visiting any of the above websites, index_chronodx2.js will start collecting the victim’s
banking info and send it to the attacker through a set of HTTP commands. The CnC server
is stored in the hosts file, but when it is not found in the system, a hardcoded backup CnC
will be used instead:

C2 Command Meaning

/aws/newQRMPClient.php Supposedly sending user info to the attacker when a QR
code scan is found on banking websites listed above, but
this feature is currently commented out

/aws/newContaBBPF.php Sending user banking info when Bancodobrasil banking
sites are intercepted

/aws/newContaCef.php Sending user banking info when Caixa banking sites are
intercepted

https://github.com/puppeteer/puppeteer#readme
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_11-1.png

24/28

/aws/newCaixaAcesso.php Telling the attacker that a victim has accessed Caixa
banking page

aws/newMercadoCartao.php Sending user banking info when Mercado banking sites are
intercepted

/aws/newExtraLogin.php Send user credentials when logging in to one of the listed
pages

Chremows (Chrome WebSocket)

Chremows is another extension that uses NodeJS and puppeteer-core, and is similar to the
functionality of node.js mentioned in the Cybereason 2020 report. Chremows targets two
platforms Mercado Livre (mercadolivre.com.br) and Mercado Pago (mercadopago.com.br)
both belong to an online marketplace company called Mercado Libre, Inc.

Chremows dependency
Sharing the same structure of chronodx module, chremows contains a loader,
CreateChrome64.dll that downloads a JavaScript-based banking trojan called
index.js . CreateChrome64.dll will automatically update index.js when a newer

version is found. Unlike chronodx, chremows executes index.js immediately after
download and doesn’t require Google Chrome to be opened. In a separate thread,
CreateChrome64.dll loads an embedded module ModHooksCreateWindow64.dll that

Cybereason has analyzed in their 2020 report. Overall, this module help increase the
capabilities that chremows has on Google Chrome, allowing the attacker to perform “active”
tasks such as sending keypresses/mouse clicks to Chrome, or opening designated pages.

https://github.com/puppeteer/puppeteer#readme
https://www.cybereason.com/hubfs/dam/collateral/reports/11-2020-Chaes-e-commerce-malware-research.pdf
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_13.png
https://www.cybereason.com/hubfs/dam/collateral/reports/11-2020-Chaes-e-commerce-malware-research.pdf

25/28

Finally, CreateChrome64.dll copies Chrome’s Local State file to the same location of
index.js with the name local.json. Index.js uses local.json to help the attacker identify

the victim.

Hardcoded CnC
Index.js employs two methods of communicating with the attacker: through WebSocket

and through HTTP. Each method has its own set of C2 servers as shown in the above
picture. WebSocket is used to receive commands and send client-related messages. On the
other hand, HTTP is for exfiltrating financial data such as banking credentials and account
information to the attacker.

List of known Index.js WebSocket commands

Command from C2 Functionality

welcome:: Send uid and information extract from local.json to the attacker

control:: The attacker establishes control over Google Chrome

uncontrol:: The attacker removes control over Google Chrome

ping:: Check if the connection to the client is OK

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/image_14.png

26/28

command:: Send command such as keystroke, mouseclick

openbrowser:: Open Chrome window with minimal size to stay hidden

If the user stays connected to the WebSocket C2 server, every six minutes it automatically
goes to the targeted Mercado Pago and Mercado Livre pages and performs malicious tasks.
During this routine, the attacker loses direct control of the browser. The target pages are
banking, credit, and merchant pages that require users’ login. If the user has not logged out
of these pages, the attacker will start to collect data and exfiltrate them through the following
HTTP requests:

/aws/newMercadoCredito.php

/aws/newMercadoPago.php

If the user is not logged in to those pages but has the password saved in Chrome, after the
routine ends, the attackers will get back their direct control of Chrome and log in manually.

Summary

Chaes exploits many websites containing CMS WordPress to serve malicious installers.
Among them, there are a few notable websites for which we tried our best to notify BR Cert.
The malicious installer communicates with remote servers to download the Python
framework and malicious Python scripts which initiate the next stage of the infection chain. In
the final stage, malicious Google Chrome extensions are downloaded to disk and loaded
within the Python process. The Google Chrome extensions are able to steal users’
credentials stored in Chrome and collect users’ banking information from popular banking
websites.

IOCs

The full list of IoCs is available here

Network

HTML Scripts

is[.]gd/EnjN1x?V=31

is[.]gd/oYk9ielu?D=30

is[.]gd/Lg5g13?V=29

tiny[.]one/96czm3nk?v=28

is[.]gd/WRxGba?V=27

is[.]gd/3d5eWS?V=26

MSI Download URLs

https://github.com/avast/ioc/tree/master/Chaes

27/28

dragaobrasileiro[.]com.br/wp-content/themes/getcorsfile.php?

chopeecia[.]com.br/D4d0EMeUm7/index.php?install

bodnershapiro[.]com/blog/wp-content/themes/twentyten/p.php?

dmt-sys[.]net/index.php?

up-dmt[.]net/index.php?

sys-dmt[.]net/index.php?

x-demeter[.]com/index.php?

walmirlima[.]com.br/wp-content/themes/epico/proxy.php?

atlas[.]med.br/wp-content/themes/twentysixteen/proxy.php?

apoiodesign[.]com/language/overrides/p.php?

CnC Servers

200[.]234.195.91

f84f305c[.]com

bkwot3kuf[.]com

comercialss[.]com

awsvirtual[.]blogspot.com

cliq-no[.]link

108[.]166.219.43

176[.]123.8.149

176[.]123.3.100

198[.]23.153.130

191[.]252.110.241

191[.]252.110.75

SHA256 Hashes

Filename Hash

MSI
installer

f20d0ffd1164026e1be61d19459e7b17ff420676d4c8083dd41ba5d04b97a08c
 069b11b9b1b20828cfb575065a3d7e0b6d00cd1af10c85c5d6c36caea5e000b7
 1836f3fa3172f4c5dbb15adad7736573b4c77976049259cb919e3f0bc7c4d5ea
 02831471e4bf9ef18c46ed4129d658c8ce5b16a97f28228ab78341b31dbef3df
 a3bcbf9ea2466f422481deb6cb1d5f69d00a026f9f94d6997dd9a17a4190e3aa
 62053aeb3fc73ef0940e4e30056f6c42b737027a7c5677f9dbafc5c4de3590bd
 e56a321cae9b36179e0da52678d95be3d5c7bde2a7863e855e331aea991d51b9
 7a819b168ce1694395a33f60a26e3b799f3788a06b816cc3ebc5c9d80c70326b

__init__.py 70135c02a4d772015c2fce185772356502e4deab5689e45b95711fe1b8b534ce
 6e6a44ca955d013ff01929e0fa94f956b7e3bac557babcd7324f3062491755e2
 0b5646f45f0fad3737f231f8c50f4ed1a113eb533997987219f7eea25f69d93f
 abc071831551af554149342ad266cc43569635fb9ea47c0f632caa5271cdf32

runScript.js bd4f39daf16ca4fc602e9d8d9580cbc0bb617daa26c8106bff306d3773ba1b74

engine.js c22b3e788166090c363637df94478176e741d9fa4667cb2a448599f4b7f03c7c

28/28

image 426327abdafc0769046bd7e359479a25b3c8037de74d75f6f126a80bfb3adf18
 3311b0b667cd20d4f546c1cb78f347c9c56d9d064bb95c3392958c79c0424428
 c9b3552665911634489af5e3cb1a9c0c3ab5aed2b73c55ae53b8731a1de23a9f

chremows fa752817a1b1b56a848c4a1ea06b6ab194b76f2e0b65e7fb5b67946a0af3fb5b
 e644268503cf1eaf62837ec52a91b8bec60b0c8ee1fb7e42597d6c852f8b8e9d
 bd5d2a0ec30fa454af1a086b4c648039422eca4fa1b1d6e8ecc4d47be7fab27f
 4d2ffae69b4e0f1e8ba46b79811d7f46f04bd8482568eccf5620e6b1129c1633
 faad384e124c283a8d024ee69dceaac877be52f5adbf18ca6b475a66663b0e85
 969fa30802bdb81be5b57fef073896c2ee3df4211663301548f8efa86257e0cf
 5a1ebf757ab9aa796a8580daafab9635660b9cc55505db194cbfefeb612e48f0
 2d9e040820acca9a0fab2dc68546e0a824c4c45ee8c62332213e47e1f6923c90
 e1d9effa8a56d23dbcefd2146eb5c174a245b35a4f718473452135bd064a2157
 32c545e133183e6fc999e8f6a0da3c6e7fb1a12b97d2a3bbc5e84faa175a9ef6
 ba3e0314b1d6e6ee10c473c1bbd883c4a5c53b5703b5ced174cd5a30b0b87160
 e210217f2b5912e16a281dcbd5a5247fe2a62897dc5c2e1bf4ff61d3a07405f0
 7a1d74c4d62ceee45a3cbaf79070cfc01342a05f47e0efb401c53040897bed77
 550188ad28ccc07791880777c2de07e6d824a7263b9e8054423597b160e594a3
 9603c4ce0f5a542945ed3ced89dd943eb865368b4e263090be9e0d9c1785615d

chrolog 9dbbff69e4e198aaee2a0881b779314cdd097f63f4baa0081103358a397252a1
 6dc63ea4dbe5d710b7ba161877bd0a3964d176257cdfb0205c1f19d1853cc43b
 3e48f714e793b3111ce5072e325af8130b90a326eca50641b3b2d2eba7ac0a45
 754eeb010795c86d1cc47b0813da6bbc6d9153f1dd22da8af694a9e2dca51cda
 0762038fe591fef3235053c7136f722820de6d8457cae09d4aa9bf6cb7f497a1

chronod ea177d6a5200a39e58cd531e3effb23755604757c3275dfccd9e9b00bfe3e129
 7c275daab005bb57e8e97ac98b0ae145a6e850370e98df766da924d3af609285
 96224c065027bb72f5e2caebf4167482fe25fb91c55f995e1c86e1c9884815c3
 2688a7ac5b408911ae3e473278ecbc7637491df2f71f6f681bc3ed33045b9124
 f3c1fd9e8674901771c5bfc4ce16eba75beff7df895a4dc6fdd33bedb2967a08
 ddecc2606be56beae331000ba091e5e77ae11380f46eba45387c65289e6ce421
 debe443266ab33acb34119f515f4622464edff198f77fd20006e2d79aafb6dfc
 bf4a83a19065d5c45858ceb988dce39d93c412902ead6434e85fbf2caa17db44
 87502ad879a658aa463088c50facfbdbb1c6592263e933b8b99e77293fdf1384
 6b6abc64053d20306147efced9df2ef75153e87a1d77ce657943b2373fb4ffb9
 679a02d0ae4f5382767eb11cefad59c0664f55ed2ce3e3b3df97b78c09e18aa3
 564b31c3d609d96a73ee139ec53453b985673ffacacb56ecd13d2c83bbf851e0
 e649f71b68cc54f3d985e398f1c6354963ec027a26230c4c30b642d2fd5af0a6

online 3fd48530ef017b666f01907bf94ec57a5ebbf2e2e0ba69e2eede2a83aafef984

mtps4 5da6133106947ac6bdc1061192fae304123aa7f9276a708e83556fc5f0619aab

Tagged asanalysis, Banking Trojan, brazil, Chrome, desktop, malware

https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/banking-trojan/
https://decoded.avast.io/tag/brazil/
https://decoded.avast.io/tag/chrome/
https://decoded.avast.io/tag/desktop/
https://decoded.avast.io/tag/malware/

