
1/11

January 24, 2022

Web Skimming Attacks Using Google Tag Manager
decoded.avast.io/pavlinakopecka/web-skimming-attacks-using-google-tag-manager/

by Pavlína KopeckáJanuary 24, 20229 min read

E-commerce websites are much more popular than they used to be, people tend to shop
online more and more often. This leads to the growth of an attack called web skimming.
Web skimming is a type of attack on e-commerce websites in which an attacker inserts
malicious code into a legitimate website. One of the most targeted e-commerce platforms is
Magento . The reason why Magento is so popular among attackers is that Magento is

known for many vulnerabilities. However, this doesn’t mean that other platforms aren’t being
targeted, for example, sites using WooCommerce have also been victims.

In this posting, we go over what web skimming attacks are and how they work. We then
analyze a series of web skimming attacks that we found which were active from March
2021 to the present. These attacks abused the Google Tag Manager and mainly
targeted sites in Argentina and Saudi Arabia .

Overview of Web Skimming Attacks

The purpose of the malicious web skimming code is to steal the website’s customers’
payment details. This attack can simply be compared to an attack on physical ATMs, where
instead of hardware skimmers, malicious code is used to steal payment card information.

https://decoded.avast.io/pavlinakopecka/web-skimming-attacks-using-google-tag-manager/
https://decoded.avast.io/author/pavlinakopecka/
https://www.bleepingcomputer.com/news/security/hackers-infect-random-wordpress-plugins-to-steal-credit-cards/

2/11

Web skimming is dangerous because the customer often has no chance to know that a
website has been compromised. Mostly, the attackers go after small e-commerce websites
with poor security, but sometimes even a big e-commerce site can become a victim. In
2018 , the British Airways website was infected by a web skimming attack. In 2019 ,
forbesmagazine[.]com was infected, payment details were sent to the
fontsawesome[.]gq . Later in 2020 a big online retailer selling beauty products,
wishtrend[.]com, also became a victim of another web skimming attack. In 2021

another big e-commerce website store.segway[.]com was infected with a skimming
attack.

We observed a webpage (wishtrend[.]com with more than 1M followers on
Facebook) that was infected with web skimming in 2020 . Later in 2021 , the same
website was infected with a phishing attack that imitates a Dropbox login.

How Web Skimming Attacks Work Under the Hood

A website can be breached and compromised both on the client side and on the server
side. From the AV perspective, as we protect the end customers (client) and have no
visibility on the server side, we focus on the client side. There can either be a single piece

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img01.png
https://www.riskiq.com/blog/external-threat-management/magecart-british-airways-breach/
https://www.trendmicro.com/vinfo/pl/security/news/cybercrime-and-digital-threats/magecart-s-payment-card-data-skimming-code-found-on-forbes-magazine-s-website

3/11

of malicious code hidden in infected websites, or more often, the attack can be split into two
or more stages. First stage is a simple loader inserted in an infected website’s HTML or in
an already existing javascript file. It can look like in the image below.

First stage of web skimming attack, example of malicious code inserted in websites
This code loads additional malicious code from an attacker’s domain, sometimes
obfuscated, sometimes not. For the second stage, attackers usually use typosquatting
domains to hide and act as a legitimate service. The malicious code gets the data from all
(or in some cases specific) input forms and sends this data to the attacker’s server.

To get the payment details, the attackers use one of the following techniques:

Stealing payment details directly from the original payment form
Inserting malicious payment form (used in cases when no form exists)
Redirecting to a malicious form on another website (can be placed on infected website
or also on attacker’s website)

The image below shows an example of a fake payment form in the red box. It is almost
impossible to recognize that something is wrong, because on some e-commerce websites
the payment form looks exactly the same and is valid. But in this case a little help is in the
yellow box that says: “You will be redirected to the Realex website when you place an order.
“ It means that if the website states that you will be redirected, then the payment form
should not be directly on the e-commerce website and the user should expect to be
redirected to the payment gateway (different website) with the form to enter payment
details.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img02.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img03.png

4/11

Example of a malicious payment form on an infected website
There is more than one way the second stage (the part which is responsible for stealing and
sending stolen payment details to the attacker) of a web skimming attack can look. In the
code snippet below, there is an example. Here the attackers use a POST request to
exfiltrate payment details, but they can also use GET requests and WebSockets .

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img04.png

5/11

Example of web skimming code
Stolen payment details are usually sold on the dark web. These datasets of credit cards that
come from web skimming attacks are usually fresh and therefore they are better and can be
sold for a higher price than for example data stolen from databases, which can be old in
many cases. More information about selling stolen cards can be found in Yonathan
Klijnsma’s

VB2019 paper: : Inside Magecart: the history behind the covert card-skimming assault on
the e-Commerce industry.

Web Skimming using Google Tag Manager

In Q3 2021 we discovered a web skimming attack that uses Google Tag Manager
(GTM) as a first stage. First, the infected webpage loads a script from
googletagmanager[.]com/gtm.js?id=gtm-<code> via script injected in the HTML file

shown on the image below.

Code snippet from index.html on infected e-commerce website
There is nothing unusual in this behaviour, many websites use Google Tag Manager and
it looks exactly the same (it can be suspicious that the website loads more than one GTM
script though). But if we look closer in the gtm.js file, we can find suspicious code in it. In
the image below there is a comparison between malicious and clean GTM script. In the

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img05.png
https://www.virusbulletin.com/virusbulletin/2019/10/vb2019-paper-inside-magecart-history-behind-covert-card-skimming-assault-e-commerce-industry/
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img06.png

6/11

malicious file, there is added custom code that loads another javascript file from
ganalitis[.]com . This is the feature of GTM , it is possible to add a custom script (which

is then loaded from googletagmanager.com domain).

Difference between usual and malicious GTM code
We were able to connect (based on our common signature and IP) ganalitis[.]com
with similar domains from the same attacker (data from RiskIQ).

Domain Active from IP

ganalitics[.]com 2021-06-03 193[.]203[.]203[.]240

bingfindapi[.]com 2021-04-29 193[.]203[.]203[.]56

webfaset[.]com 2021-04-13 193[.]203[.]203[.]56

pixstatics[.]com 2021-05-19 193[.]203[.]203[.]56

ganalitis[.]com 2021-10-21 91[.]242[.]229[.]96

gstatsc[.]com 2021-12-13 91[.]242[.]229[.]96

gstatlcs[.]com 2021-12-15 193[.]203[.]203[.]14

gstatuslink[.]com 2022-01-02 91[.]242[.]229[.]96

gtagmagr[.]com 2022-01-05 193[.]203[.]203[.]14

The second stage (downloaded from the malicious domain) is a file named favicon (later
renamed to refresh) that contains about 400 lines of obfuscated javascript code. We
found that this code was being changed over time to avoid detection. The deobfuscated

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img07.png

7/11

code is shown below, almost everything out of the 400 lines of code was just obfuscation.
This file hides malicious code responsible for downloading the final stage through
WebSockets .

The final stage of malware is downloaded through WebSockets . First, the web page sends
its hostname, and then according to that information the corresponding malicious javascript
is received. This communication is shown in the image below.

Malicious javascript code is about 1k lines long (formatted) and as the previous stage is
also obfuscated. This code is responsible for stealing the payment details. At the end of the
obfuscated javascript code (shown in the image below) is configuration which is different for
every infected eshop. The red box at the bottom shows the configuration where the fake
payment form will be inserted into an HTML file on the infected website.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img08.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img09.png

8/11

The end of the third stage file that contains configuration
The code from the yellow box is decoded in the white box. It is a dictionary, the key
E528330211747l contains the form field names that match the input form field names on

the infected webpage. The last key contains an exfiltration URL that is encoded in
base64 . In the image below is a code from an infected website, we can see that the id of

the email field (customer-email) is in the mentioned code.

The missing field names (from fake payment form) are in the variable a0_0x11ac38 .
Which is an array and contains the following fields:

The fake payment form embedded on the infected website is shown in the image below.
Above is the infected webpage, while below is how the webpage looks normally.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img10.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img11.png
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img12.png

9/11

E-commerce website with fake payment form
The stolen payment details (including details such as name and address) are sent to the
attacker encoded in base64 through WebSockets .

Affected users

In the map below are shown countries with the most affected users. The top is
Argentina , because of prune[.]com[.]ar . Site was infected with the new malicious

domain gstatlcs[.]com .

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img13.png

10/11

The second one is Saudi Arabia e-commerce website souqtime[.]com . From RiskIQ
data we can see that this e-commerce website was infected over time with at least seven
different web skimming domains.

Currently Avast detects the malicious domain gstatuslink[.]com on souqtime[.]com .

Conclusion

Overall, we can say that the attacker uses Google Tag Manager to avoid detection. At the
same time they were able to change the domains from which the malicious code was
loaded over time, he also changed the malicious code itself to hide from detection by
antivirus.

https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img14.png
https://community.riskiq.com/search/souqtime.com/hostpairs
https://decoded.avast.io/wp-content/uploads/sites/2/2022/01/img15.png

11/11

Some websites were infected for several months (for example souqtime[.]com). It can
be difficult for users to spot that the site is infected. For example, it is suspicious if the user
fills in the payment form on the website itself and is then redirected to another payment
form on the payment gateway webpage. But in cases where the payment form is normally
present directly on the e-commerce website and the attacker steals payment details from
this legitimate form, it is really hard to notice that the website is infected. Therefore we
recommend using a second factor (e.g. mobile app or SMS code) to confirm internet
payments if the bank supports it.

Website owners should keep software updated, monitor logs for any suspicious activity, use
strong passwords and also use Web Application Firewall.

IOC malicious domains:

pixstatics[.]com

ganalitics[.]com

bingfindapi[.]com

webfaset[.]com

ganalitis[.]com

gstatsc[.]com

gstatlcs[.]com

gstatuslink[.]com

gtagmagr[.]com

Tagged asanalysis, magento, malware, skimming

https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/magento/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/skimming/

