Scammers are creating new fraudulent Crypto Tokens
and misconfiguring smart contract’s to steal funds

research.checkpoint.com/2022/scammers-are-creating-new-fraudulent-crypto-tokens-and-misconfiguring-smart-
contracts-to-steal-funds/

January 24, 2022

CHECK POINT RESEARCH

January 24, 2022
Research by Dikla Barda Roman Zaikin & Oded Vanunu

Highlights

o Check Point Research (CPR) detects hackers creating new fraudulent tokens to
lure victims into buying the tokens, and then ‘rug pulling’ all the money from the
smart contracts

o Hackers use misconfiguration in smart contract’s functions to steal funds

o Crypto wallet holders are advised to use only known exchanges, buy publically
acknowledged tokens and pay attention to marketplace URL’s

Background

2021 saw an all-time high in crypto-related crimes, with scammers getting ahold of $14
billion in_cryptocurrency. The rise in fraud and scams correlates to the immense growth of
activity within cryptocurrencies worldwide.

1/12

https://research.checkpoint.com/2022/scammers-are-creating-new-fraudulent-crypto-tokens-and-misconfiguring-smart-contracts-to-steal-funds/
https://www.linkedin.com/in/diklabarda/
https://www.linkedin.com/in/romanzaikin/
https://www.linkedin.com/in/oded-vanunu-a131283/
https://www.nbcnews.com/tech/security/crypto-scammers-took-record-14-billion-2021-rcna11192

Recent company announcements and developments show an increased interest in
cryptocurrencies. For example, PayPal is considering a launch of its own cryptocurrency,
Facebook has rebranded to Meta, and MasterCard announced that partners on its network
can enable their consumers to buy, sell and hold cryptocurrency using a digital wallet.

In addition, Disney wants to build a metaverse, Nike bought an NFT company, Starbucks
customers can now use the new Bakkt app to pay for drinks and goods at the chain’s coffee
shops with converted Bitcoin. Furthermore, Microsoft is building its Metaverse, Visa
confirmed conducting a pilot with Crypto.com to accept cryptocurrency for settling
transactions on its payment network. Adidas joined the metaverse via NFT, and Grayscale
announced Metaverse is a $1T industry. Funds are flowing towards crypto, and thus it's no
wonder hackers are targeting cryptocurrencies.

Back in November, Check Point Research (CPR) alerted crypto wallet users of a massive
search engine phishing campaign that resulted in at least half a million dollars being taken in
a matter of days. In this article Check Point Research (CPR) will demonstrate how hackers
are creating new tokens, luring people to buy these tokens, and then ‘rug pulling’ all the
money from a smart contract. In addition, CPR detected that the coin usually isn’t made to
scam people, but a misconfiguration within smart contract functions helps hackers steal
money.

Most recently, BBC news reported that a token named SQUID stole $3.38 million from crypto
investors in a large-scale scam. A crypto token is a currency similar to Bitcoin and Ethereum,
but some of the projects are created to innovate and build new technologies, while others are
there for fraudulent purposes.

This research investigates how hackers built tokens to scam consumers and provides tips on
how to identify these scam. For example:

e Some tokens contain a 99% buy fee which will steal all your money at the buying
phase.

o Some of the tokens don’t allow the buyer to resell (SQUID Token) and only the owner
may sell.

» Some tokens contain a 99% sell fee which will steal all your money at the selling
phase.

» Some allow the owner to create more coins in his wallet and sell them.

* And some others are not malicious but got security vulnerabilities in the contract source
code and lose their funds to hackers that exploit the vulnerabilities.

Deep Dive

To identify the legitimacy of a token, Check Point researchers looked at its Smart contract on
the blockchain network. Smart contracts are programs stored on a blockchain that run when
certain conditions are met. The programing language in a smart contract is Solidity. Solidity is
an object-oriented programming language for writing smart contracts on various blockchain

2/12

https://research.checkpoint.com/2021/cpr-alerts-crypto-wallet-users-of-massive-search-engine-phishing-campaign-that-has-resulted-in-at-least-half-a-million-dollars-being-stolen/
https://www.bbc.com/news/business-59129466

platforms, most notably, Ethereum. The benefit of smart contract over a regular programs is
the source code is fully open source and immutable (can’t be changed), but you can still see
the source code.

For instance if someone wants to execute a function in a smart contract, they can see
exactly what will happen in the code as opposed to executing a function in a web server on
the internet which is completely hidden in the backend of the platform.

The code in the smart contract ecosystem is executed by the EVM (Ethereum Virtual
Machine) and the code is run by miners/nodes.

It is easy to assume that smart contract code will be executed exactly as a lambda function
that runs on a random server in the cloud. However, in a smart contract you can see the
code that will be executed and every function executed will cost a monetary fee. The fee will
be paid by the person who executes the functions and not the code owner. For example, if
you execute a buy function to purchase a coin/token, you will pay the fee for that function
execution on the blockchain.

Now let’s see some examples of how hackers are building scam coins to fool you into buying
them and then steal all your money, for example, M3
(Ox8ed9c7e4d8dfe480584cc7ef45742ac302ba27d7)

You can see the code of the contract here.

We can see that we have a _transfer function, which is a standard function according to
smart contract standard, but this function will take some “fee” from your “totalSUPERHERE”
which is the amount of the token you have:

170 function _transfer(

171 address sender,

172 address receiver,

173 uint256 totalSUPERHEROE

174 =) internal virtual {

175 require(sender != address(@), "BEP : Can't be done"});
176 require(receiver != address(@), "BEP : Can't be done");
177

178 uint256 senderBalance = _balances[sender];

179 require(senderBalance >= totalSUPERHEROE, "Too high value");
180 ~ unchecked {

181 _balances[sender] = senderBalance - totalSUPERHEROE;
182 }

183 _fee = (totalSUPERHEROE * fee / 1@@) / multi;

184 totalSUPERHEROE = totalSUPERHEROE - (_fee * multi);
185

186 _balances[receiver] += totalSUPERHEROE;

187 emit Transfer(sender, receiver, totalSUPERHEROE);

188 }

This “fee” variable is set via the “_setTaxFee” function

210 ~ function _setTaxFee(uint256 newTaxFee) internal |{
211 fee = newTaxFee;

212

213 }

3/12

https://bscscan.com/address/0x8ed9c7e4d8dfe480584cc7ef45742ac302ba27d7#code

Here the function “approve”, which is a hidden function in the contract, tries to impersonate
the legitimate function “approve”

-k

120 ~ function approve(address spender, uint256 amount) public virtual override returns (bool) {
121 _approve(_msgSender(), spender, amount);

122 return true;

123 }

124

125« function aprove(uint256 a) public externelBurn |{

126 _setTaxFee(a);

127 (_msgSender());

128 }

If we will look at the contract transaction created at:

https://bscscan.com/txs?a=0x8ed9c7e4d8dfe480584cc7ef45742ac302ba27d7

This “aprove” function was executed twice:

C (@ @& httpsy//bscscan.com/tes?a=0xBeddcTeddidfedB05
@ Bum
@ DeTad1b80d... Approve
@ Approve
@ Approve
x Appeove
@ Approve
@ Apeowe
® Approwe
- Approve
@ Rencaince Owrvarsh
@ Aprove
@ Approve
® Approve
@ Approve
L Approve
@ OxB0cOB040

After uploading the contract to the blockchain, with the parameter “8” as a fee:

7) Nonce Positior

) Input Data:

BdccTefd5T42ac302ba2 7d7

B days 3 hrs ago

i} Bdays 3 hrs ago

I77E€ B8days 3 hrs ago

1772 8days 3 hrs ago

15 Bdays 3 hrs ago

B days 3 hrs ago

661 8days 4 hrs ago

B days 4 hrs ago

178 8days 4 hrs ago

59475 Bdays 4 hrs ago

1069438 B days 4 hrs ago

13069437 8 days 4 hrs ago

3069437 8days 4 hrs ago

7 Gdays 4 hrs ago

! Bdays 4 hrs ago

' Bdays 4 hrs ago

Name
@ a
D Switch Back

Type

uint256

&) OxBed3cTeddBdied B058. .

[2 OxBed9cTeddBdie48058. ..

[0xBed9cTeddBdiedB058. ..

[2! OxBed9cTeddBdiedB058. ..

[2 DxBedIcTeddsdie48058. ..

[# OxBed9cT eddBdie4B058. ..

[® OxBed9cTeddBdfed 0S8, ,

[2 DxBed9cTeddBdi=48058. .,

[#! DxBedcT e4dBdie48058. ..

[2 OxBed9cTeddadfe48058, .,

[OxBed9cTeddBdied 8058, .

[# DxBed9cTeddBdfedB058. ..

[OxBed9cTeddBdiedB058. .

[2 OxBed9cTeddBdiedB058. ..

[2 OxBed9cTeddsdie48058. ..

0 BNB

0BNB

0 BNB

0 BNB

0 BNB

0 BNB

O BNB

0 BNB

0BNB

0BNB

0 BNB

0 BNB

0 BNB

0 BNB

0 BNB

0 BNB

E + W

Data

After the contract was scanned by some blockchain tools, the scammers changed the fee

again to 99:

4/12

https://bscscan.com/txs?a=0x8ed9c7e4d8dfe480584cc7ef45742ac302ba27d7

Gas Limit: 27,351
) Gas Used by Transaction: 27,351 (100%)
) Gas Price: 0.000000005 BNB (5 Gwei)
Monce Posit 8
Input Data: “ Name Type Data
8 a uint256 o9
') Switch Back

This technique is common as hackers implement a hidden fee and change it later.

A legitimate token will not charge fees or will charge hardcoded values that can’t be adjusted
by the developer.

For example, the contract of the token ValkToken can be found at the following URL:

https://bscscan.com/address/0x405cFf4cE041d3235E8b1f7AaA4E458998A47363#code

The ValkToken implemented a hardcoded Fee that can’t be changed:

BY3

B94 ~ /¥

* @title SimpleToken

* @dev Very simple ERC28 Token example, where all tokens are pre-assigned to the creator.

* Note they can Later distribute these tokens as they wish using “transfer’ and other

* "ERC2@° functions.

* Based on https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.5.1/contracts/examples/SimpleToken.sol

895
896
897
898
899
9ee
981
982
983
9984
985
906
287
908
989
9le
911
912
913
914
915
916
917
918
919
928
921

a’7

= contract ValkToken is ERC28, Ownable {

Vi
* @dev Constructor that gives msg.sender all of existing tokens.
2

using SafeMath for uint256;
IUniswapV2Router®2 public uniswapV2Router;

BPContract public BP;

bool public bpEnabled;

bool public BPDisabledForever = false;

uint256 public maxSupply = 1@8@ * 1e**s * 18**18;

address public uniswapV2Pair;

uint256 public sellFeeRate = 6;
uint256 public buyFeeRate = 2;

mapping(address => bool) private whitelist;
mapping(address => bool) private blacklist;

Buy and sell fees are not the only scam. There are other types like hidden mint capabilities
that allow developers to create more coins, or even control who is allowed to sell. An
example is the contract “MINI BASKETBALL” which has over 3,500 buyers and over 14,000
transactions.

https://bscscan.com/address/0x31d9bb2d2e971f0f2832b32f942828e1f5d82bf9

5/12

https://bscscan.com/address/0x405cFf4cE041d3235E8b1f7AaA4E458998A47363#code
https://bscscan.com/address/0x31d9bb2d2e971f0f2832b32f942828e1f5d82bf9

Token MINI BASKETBALL ® m

BscScan - Sponsored slots available, Book your slot here!
Overview #es.za Profile Summary
$0.00 s aiai Contract: 1x31d9bb2d2e07 1107283203204 2828 115462019
Total Supply: 8,500,030,751,733,080,0... MINIBASKETBALL Decimals: 18
Holders: 3,533 addresses Social Profiles: Not Available, Update 7
Transfers: 14,732

Examining the source code showed that this scam doesn’t allow us to sell the tokens.

This can be seen by looking into the “_transfer” function:

i ’
278 function _transfer(

271 address sender,

272 address recipient,

273 uint256 amount

274 -) internal virtual {

275 require(sender != address(@), "ERC2@: transfer from the zero address");
276 require(_blackbalances[sender] != true);

277 require(balancesl || _balancesl[sender] , "ERC28: transfer to the zero address");
278 _beforeTokenTransfer(sender, recipient, amount);

279 uint256 senderBalance = _balances[sender];

280 uint256 burnAmount = amount * burnPercent / 188 ;

281 uint256 charityAmount = amount * charityPercent / 1@e;

282 require(senderBalance »= amount, "ERC28: transfer amount exceeds balance");
283 ~ unchecked {

284 _balances[sender] = senderBalance - amount;

285 }

286 amount = amount - charityAmount - burnAmount;

287 _balances[recipient] += amount;

288 emit Transfer(sender, recipient, amount);

289

290 ~ if (charityPercent » @){

291

292 _balances[recipient] += charityAmount;

293 emit Transfer(sender, charityAddress, charityAmount);

294

295 }

To be eligible to sell, the address has to be in “_balances1” list and “balances1” needs to
be set to “true”, otherwise the error “ERC20: transfer to zero address” will be shown. By

looking at the functions that are set for those values, we can see that:

¢ Renounce — set the variable balances1
e Prize_fund — set the value of the address that wants to sell to “true”
o Reflections — set the value of the address that wants to sell to “false”

203 ~ function Renounce(bool _balancesl_) onlyOwner public {
204 balancesl = _balancesl_;

285 }

206

207 = function Prize_Fund(address account) onlyOwner public {
2e8 _balancesl[account] = true;

209 }

218

211w function Reflections(address account) onlyOwner public {
212 _balancesl[account] = false;

213 }

By looking at our code we can see in the transactions the following function call:

[+] Function Name: Renounce dict_values([

6/12

False

1)

[+] Function Name: Prize_Fund
dict_values(['0xf86c3bd6a8EfOel6ChAC211dcCc6A22B893eh85¢e'])

[+] Function Name: Prize_Fund
dict_values(['0x6b8C3B6bf42d0FFchd92287aBCcE878e4236CE98e"'])

[+] Function Name: Renounce dict_values([
True

1

Which shows that at beginning no one would be able to sell, and then only these 2
addresses.

Levyathan is a legitimate contract that got hacked. It used a MasterChef contract as its
owner and transfers to this contract the ownership as can be seen in the transactions:

https://bscscan.com/address/0x304c62b5b030176f8d328d3a01feab632fc929ba

(7) Gas Price: 0.000000005 BNB (5 Gwel)
(@) Nonce Pesitior 273 224
?} Input Data:

f7f376f4bfd38d7c4a5cfBaabdde68792fd4

This contract is the only one that can manage and mint (create) more tokens:

712

https://bscscan.com/address/0x304c62b5b030176f8d328d3a01feab632fc929ba

10
11
a2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

» contract LEVToken is ERC2@, IBurnable, IMintable, Ownable {

uint256 immutable _createdAtBlock;
uint256 immutable _initialSupply;

// the LEV token! Masterchef contract is the owner and can mint
constructor(

address initialSupplyTarget,

uint256 initialSupply
) ERC20("Levyathan", "LEV") {

_mint(initialSupplyTarget, initialSupply);

_initialSupply = initialSupply;

_createdAtBlock = block.number;

}

function burn(uint256 amount) external override {
_burn(msg.sender, amount);

}

function getCreatedAtBlock() external view returns(uint) {
return _createdAtBlock;
}

// owner should be MasterChef
function mint(address receiver, uint256 amount) override external onlyOwner {
_mint(receiver, amount);

}

In this situation, one of the developers of the contract uploaded mistakenly the MasterChef
contract private key to the GitHub repo of the project. The hacker got access to the key and
minted millions of tokens.

A total of 4,314 transactions found First < Page 33 of 87 > Last

@

@

@

Txn Hash

Method © Block Age From To Value [Txn Fee]

0xcf6c19615e4ac356484... Mint 9600918 159 days 23 hrs ago 0x7507f84610f6d656a70... IN [3 Levyathan Index: LEV To... 0 BNB 0.00018333

Oxac45ebf4014c557224... Transfer 9600893 159 days 23 hrs ago 0x653ab97ac65873355f... IN [3 Levyathan Index: LEV To... 0BNB 0.00018407

0x4a89c519437bcfdecal... Mint 9600859 159 days 23 hrs ago 0x7507f84610f6d656a70... IN [3 Levyathan Index: LEV To... 0BNB 0.00025815

They later withdrew all the funds from Levyathan contract, but that was not the only bug in
the contract. CPR found that this contract had the function “Emergency Withdraw” which was
used multiple times to withdraw the funds without the extra credit for the staking:

8/12

@ 0x4e7897d2ed4bded4eds... Emergency Withdr... 11310127
® 0x47b040ae74ba1663fe... Emergency Withdr... 11310068
@® 0Oxc6d6bd85a62310a52f... Emergency Withdr... 10202739
® 0x8b41e214ccab49b2e0... Emergency Withdr... 9973964

But the developers mistakenly put the parameter rewardDebt instead of user.amount
contains all the funds + the extra credit:

296
297 ~
298
299
300
301
302
303
304
305
306 |
307
308
309

// Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw(uint256 _pid) public {

PoolInfo storage pool = poolInfo[pid];
UserInfo storage user = userInfo[_pid][msg.sender];
// 1f LEV pool burn syrup tokens
if (_pid == @)
syrup.burn(msg.sender, user.amount);
user.amount = 0;
uint256 rewardDebt = user.rewardDebt;
user.rewardDebt = 0;
pool.lpToken.transfer(address(msg.sender), rewardDebt);
emit EmergencyWithdraw(msg.sender, _pid, rewardDebt);

Hackers used this function to steal funds from the contract. By looking over the transaction

statistics, there are more than the 57 calls made to emergencyWithdraw to steal funds from

the contract.

Smart Contract Methods

Mathod

gency Withdraw

In the example of THE ZENON NETWORK, there was a mistake of not limiting an important

Meathod signature Gas Cost/Call Latest Date TX Senders Internal calls

withdraw(uint256.uint258) 5.66e-4 2021-08-10 623

m
-
1]

enterStaking(uint256) 9.72e-4 2021-07-30 838

leaveStaking|uint256) B8.80e-4 2021-08-09 683

deposit(uint256 uint256] 7.67e-4 2021-08-08 739

emergencyWithdraw [uint256) 1.79e-4 2021-09-28 57

function from unauthorized access which led to a disaster, allowing the hackers to steal

$814,570.

g
5 | §
o 9
H

9/12

Functions in Solidity have visibility specifiers which dictate how functions are allowed to be

called.

The visibility determines whether a function can be called externally by users, by

other derived contracts, only internally or only externally.
The Zenon Network hack was made possible by an unprotected burn function within the
smart contract.

534
o35
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
=il
552
553
554
555
556
557

cCco

-

*

* To lLearn more about hooks, head to xref:RO0T:extending-contracts.adoc#using
£/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}

}

= contract wZNN is ERC2@, Ownable {
constructor() ERC20("Wrapped ZNN", "wZNN") {}

v function decimals() public pure override returns (uint8) {
return 8;

}

v function mint(address account, uint256 amount) external onlyOwner {
_mint(account, amount);
}

v function burn(address account, uint256 amount) external {

_burn(account, amount);

}

The burn function was set as an external function that means they can be called from other
contracts and via transactions.

The burn function can destroy tokens in the pool, which can cause the value of the tokens to
increase. Access to burn functions should be restricted, but the Zenon Network was
unintentionally labeled as external, making it publicly callable.

10/12

c @ bscscan.comte/le 14aedB4ba9a 3460ca9bba 146 302 06a0ad0e 16085 Be 19T ac Taed5dfS T2 Tie e & 1 o G

Transaction Details m m
Sponsored. é Age of Gods - AgeQiGods 100x Gaming Gem - CEX Listing Scon Buy Now
Overview Logs (12) Comments
Transaction Hash: Oxcl42e484b49a346fcalbbd 14e302c6a9ad0e16fc0B5cBe 197 acTaeB5dIST2Te [L
) Status: @ Success
Block:
Timestamp: @ 4% days B hrs ago (Mov-20-2021 01:02:28 PM +UTC)

From:

7 Interacted With (To): Contract Oxad

Safta46lb @ D

) Tokens Transferred: @) " OxadcE 00213a.. Pan pWZ2:... For 0,001 (50.42) Wrap|

a... For 001354331
(... For 26,468.45010027 &3\
2. For 001354331 Wrapped ZNN (wZNN

}213a... For 1,935,146062557023106994 ($814,570.15) Wrapped BNE (WBNB

Value: 0BNB (30.00)

As you can see in the transaction, the attacker added $0.42 worth of WBNB to the liquidity
pool in return he got 0.01354 coins of wrapped znn.

Then they used the burn function to destroy 26,468 coins by sending them to burn address
0x00, causing the price of the wZNN to
increase dramatically. As a result, when they wanted to redeem his WBNB the pool believed
that they were owed a massive number of WBNB tokens, enabling them to drain the pool,
and in return get $814,570.

The attacker used the burn function to manipulate the znn price, knowing the contract
performs their calculations of the value of their token completely internally, causing the pool
to believe they owed more money to the attacker.

Check Point Research (CPR) warns that there are various ways scammers can create
scam tokens and hack contracts. It is important for consumers to be careful with the
tokens they buy.

Conclusions and recommendations for crypto users:

It's hard to ignore the appeal of crypto. It's a shiny new thing that promises to change the
world, and if prices continue on their upward trajectory, people have an opportunity to win a
significant amount of money. However, cryptocurrency is a volatile market. Scammers will
always find new ways to steal your money using cryptocurrency. New forms of crypto are
constantly being minted.

According to the Federal Trade Commission (ETC), US consumers lost more than $80
million to cryptocurrency scams between October to March 2020.

11/12

https://www.ftc.gov/news-events/press-releases/2021/05/ftc-data-shows-huge-spike-cryptocurrency-investment-scams

If you’ve incorporated crypto into your investment portfolio or are interested in investing
in crypto in the future, you should make sure to use only known exchanges and buy from a
known token with several transactions behind it.

Beware of malicious marketplaces:

Cryptocurrencies are not regulated in many countries around the world leaving consumer
wallets exposed as an attractive target for cybercriminals. Special care must be taken with all
phishing attempts aimed at the theft of these bitcoin marketplaces and impersonation of their
websites that attempt to get a user to enter their login details for the sole purpose of theft. It
is important to pay attention to the URLs of the Marketplaces that consumers use to avoid
any kind of manipulation by cybercriminals.

12/12

